
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

JSP Scripting
Elements
Topics in This Chapter

• The purpose of JSP

• How JSP pages are invoked

• Using JSP expressions to insert dynamic results directly
into the output page

• Using JSP scriptlets to insert Java code into the method
that handles requests for the page

• Using JSP declarations to add methods and field
declarations to the servlet that corresponds to the JSP
page

• Predefined variables that can be used within expressions
and scriptlets
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chap

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ter
avaServer Pages (JSP) technology enables you to mix regular, static
HTML with dynamically generated content from servlets. You simply
write the regular HTML in the normal manner, using familiar
Web-page-building tools. You then enclose the code for the dynamic

parts in special tags, most of which start with <% and end with %>. For
example, here is a section of a JSP page that results in “Thanks for ordering
Core Web Programming” for a URL of http://host/OrderConfirma-
tion.jsp?title=Core+Web+Programming:

Thanks for ordering <I><%= request.getParameter("title") %></I>

Separating the static HTML from the dynamic content provides a number
of benefits over servlets alone, and the approach used in JavaServer Pages
offers several advantages over competing technologies such as ASP, PHP, or
ColdFusion. Section 1.4 (The Advantages of JSP) gives some details on these
advantages, but they basically boil down to two facts: that JSP is widely sup-
ported and thus doesn’t lock you into a particular operating system or Web
server and that JSP gives you full access to servlet and Java technology for the
dynamic part, rather than requiring you to use an unfamiliar and weaker spe-
cial-purpose language.

The process of making JavaServer Pages accessible on the Web is much
simpler than that for servlets. Assuming you have a Web server that supports
JSP, you give your file a .jsp extension and simply install it in any place you

J

231

232 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
could put a normal Web page: no compiling, no packages, and no user
CLASSPATH settings. However, although your personal environment doesn’t
need any special settings, the server still has to be set up with access to the
servlet and JSP class files and the Java compiler. For details, see your server’s
documentation or Section 1.5 (Installation and Setup).

Although what you write often looks more like a regular HTML file than a
servlet, behind the scenes, the JSP page is automatically converted to a nor-
mal servlet, with the static HTML simply being printed to the output stream
associated with the servlet’s service method. This translation is normally
done the first time the page is requested. To ensure that the first real user
doesn’t get a momentary delay when the JSP page is translated into a servlet
and compiled, developers can simply request the page themselves after first
installing it. Many Web servers also let you define aliases so that a URL that
appears to reference an HTML file really points to a servlet or JSP page.

Depending on how your server is set up, you can even look at the source
code for servlets generated from your JSP pages. With Tomcat 3.0, you need to
change the isWorkDirPersistent attribute from false to true in
install_dir/server.xml. After that, the code can be found in
install_dir/work/port-number. With the JSWDK 1.0.1, you need to
change the workDirIsPersistent attribute from false to true in
install_dir/webserver.xml. After that, the code can be found in
install_dir/work/%3Aport-number%2F. With the Java Web Server, 2.0 the
default setting is to save source code for automatically generated servlets. They
can be found in install_dir/tmpdir/default/pagecompile/jsp/_JSP.

One warning about the automatic translation process is in order. If you
make an error in the dynamic portion of your JSP page, the system may not
be able to properly translate it into a servlet. If your page has such a fatal
translation-time error, the server will present an HTML error page describ-
ing the problem to the client. Internet Explorer 5, however, typically replaces
server-generated error messages with a canned page that it considers friend-
lier. You will need to turn off this “feature” when debugging JSP pages. To do
so with Internet Explorer 5, go to the Tools menu, select Internet Options,
choose the Advanced tab, and make sure “Show friendly HTTP error mes-
sages” box is not checked.

Core Warning

When debugging JSP pages, be sure to turn off Internet Explorer’s
“friendly” HTTP error messages.
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.1 Scripting Elements 233

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Aside from the regular HTML, there are three main types of JSP con-
structs that you embed in a page: scripting elements, directives, and actions.
Scripting elements let you specify Java code that will become part of the
resultant servlet, directives let you control the overall structure of the servlet,
and actions let you specify existing components that should be used and oth-
erwise control the behavior of the JSP engine. To simplify the scripting ele-
ments, you have access to a number of predefined variables, such as request
in the code snippet just shown (see Section 10.5 for more details). Scripting
elements are covered in this chapter, and directives and actions are explained
in the following chapters. You can also refer to Appendix (Servlet and JSP
Quick Reference) for a thumbnail guide summarizing JSP syntax.

This book covers versions 1.0 and 1.1 of the JavaServer Pages specification.
JSP changed dramatically from version 0.92 to version 1.0, and although
these changes are very much for the better, you should note that newer JSP
pages are almost totally incompatible with the early 0.92 JSP engines, and
older JSP pages are equally incompatible with 1.0 JSP engines. The changes
from version 1.0 to 1.1 are much less dramatic: the main additions in version
1.1 are the ability to portably define new tags and the use of the servlet 2.2
specification for the underlying servlets. JSP 1.1 pages that do not use custom
tags or explicitly call 2.2-specific statements are compatible with JSP 1.0
engines, and JSP 1.0 pages are totally upward compatible with JSP 1.1
engines.

10.1 Scripting Elements

JSP scripting elements let you insert code into the servlet that will be gener-
ated from the JSP page. There are three forms:

1. Expressions of the form <%= expression %>, which are evalu-
ated and inserted into the servlet’s output

2. Scriptlets of the form <% code %>, which are inserted into the
servlet’s _jspService method (called by service)

3. Declarations of the form <%! code %>, which are inserted into
the body of the servlet class, outside of any existing methods

Each of these scripting elements is described in more detail in the follow-
ing sections.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

234 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Template Text

In many cases, a large percentage of your JSP page just consists of static
HTML, known as template text. In almost all respects, this HTML looks just
like normal HTML, follows all the same syntax rules, and is simply “passed
through” to the client by the servlet created to handle the page. Not only
does the HTML look normal, it can be created by whatever tools you already
are using for building Web pages. For example, I used Allaire’s HomeSite for
most of the JSP pages in this book.

There are two minor exceptions to the “template text is passed straight
through” rule. First, if you want to have <% in the output, you need to put <\%
in the template text. Second, if you want a comment to appear in the JSP
page but not in the resultant document, use

<%-- JSP Comment --%>

HTML comments of the form
<!-- HTML Comment -->

are passed through to the resultant HTML normally.

10.2 JSP Expressions

A JSP expression is used to insert values directly into the output. It has the
following form:

<%= Java Expression %>

The expression is evaluated, converted to a string, and inserted in the
page. This evaluation is performed at run time (when the page is requested)
and thus has full access to information about the request. For example, the
following shows the date/time that the page was requested:

Current time: <%= new java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables.
These implicit objects are discussed in more detail in Section 10.5, but for
the purpose of expressions, the most important ones are:

• request, the HttpServletRequest
• response, the HttpServletResponse
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.2 JSP Expressions 235

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

• session, the HttpSession associated with the request (unless
disabled with the session attribute of the page directive — see
Section 11.4)

• out, the PrintWriter (a buffered version called JspWriter)
used to send output to the client

Here is an example:

Your hostname: <%= request.getRemoteHost() %>

XML Syntax for Expressions

XML authors can use the following alternative syntax for JSP expressions:

<jsp:expression>

Java Expression

</jsp:expression>

Note that XML elements, unlike HTML ones, are case sensitive, so be
sure to use jsp:expression in lower case.

Using Expressions as Attribute Values

As we will see later, JSP includes a number of elements that use XML syntax
to specify various parameters. For example, the following example passes
"Marty" to the setFirstName method of the object bound to the author
variable. Don’t worry if you don’t understand the details of this code; it is dis-
cussed in detail in Chapter 13 (Using JavaBeans with JSP). My purpose here
is simply to point out the use of the name, property, and value attributes.

<jsp:setProperty name="author"

property="firstName"

value="Marty" />

Most attributes require the value to be a fixed string enclosed in either sin-
gle or double quotes, as in the example above. A few attributes, however, per-
mit you to use a JSP expression that is computed at request time. The value
attribute of jsp:setProperty is one such example, so the following code is
perfectly legal:

<jsp:setProperty name="user"

property="id"

value=’<%= "UserID" + Math.random() %>’ />

Table 10.1 lists the attributes that permit a request-time value as in this
example.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

236 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Example

Listing 10.1 gives an example JSP page; Figure 10–1 shows the result. Notice
that I included META tags and a style sheet link in the HEAD section of the
HTML page. It is good practice to include these elements, but there are two
reasons why they are often omitted from pages generated by normal servlets.
First, with servlets, it is tedious to generate the required println statements.
With JSP, however, the format is simpler and you can make use of the code
reuse options in your usual HTML building tool. Second, servlets cannot use
the simplest form of relative URLs (ones that refer to files in the same direc-
tory as the current page) since the servlet directories are not mapped to
URLs in the same manner as are URLs for normal Web pages. JSP pages, on
the other hand, are installed in the normal Web page hierarchy on the server,
and relative URLs are resolved properly. Thus, style sheets and JSP pages can
be kept together in the same directory. The source code for the style sheet,
like all code shown or referenced in the book, can be downloaded from
http://www.coreservlets.com/.

Table 10.1 Attributes That Permit JSP Expressions

Element Name Attribute Name(s)

jsp:setProperty
(see Section 13.3, “Setting Bean Properties”)

name
value

jsp:include
(see Chapter 12, “Including Files and Applets in JSP
Documents”)

page

jsp:forward
(see Chapter 15, “Integrating Servlets and JSP”)

page

jsp:param
(see Chapter 12, “Including Files and Applets in JSP
Documents”)

value
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.2 JSP Expressions 237

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 10.1 Expressions.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Expressions</TITLE>
<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"
 CONTENT="JSP,expressions,JavaServer,Pages,servlets">
<META NAME="description"
 CONTENT="A quick example of JSP expressions.">
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H2>JSP Expressions</H2>

 Current time: <%= new java.util.Date() %>
 Your hostname: <%= request.getRemoteHost() %>
 Your session ID: <%= session.getId() %>
 The <CODE>testParam</CODE> form parameter:
 <%= request.getParameter("testParam") %>

</BODY>
</HTML>

Figure 10–1 Typical result of Expressions.jsp.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

238 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
10.3 JSP Scriptlets

If you want to do something more complex than insert a simple expression,
JSP scriptlets let you insert arbitrary code into the servlet’s _jspService
method (which is called by service). Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as
expressions (request, response, session, out, etc.; see Section 10.5). So,
for example, if you want output to appear in the resultant page, you would
use the out variable, as in the following example.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

In this particular instance, you could have accomplished the same effect
more easily by using the following JSP expression:

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot
be accomplished with expressions alone. These tasks include setting response
headers and status codes, invoking side effects such as writing to the server
log or updating a database, or executing code that contains loops, condition-
als, or other complex constructs. For instance, the following snippet specifies
that the current page is sent to the client as plain text, not as HTML (which is
the default).

<% response.setContentType("text/plain"); %>

It is important to note that you can set response headers or status codes
at various places within a JSP page, even though this capability appears to
violate the rule that this type of response data needs to be specified before
any document content is sent to the client. Setting headers and status codes
is permitted because servlets that result from JSP pages use a special type
of PrintWriter (of the more specific class JspWriter) that buffers the
document before sending it. This buffering behavior can be changed, how-
ever; see Section 11.6 for a discussion of the autoflush attribute of the
page directive.
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.3 JSP Scriptlets 239

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

As an example of executing code that is too complex for a JSP expression,
Listing 10.2 presents a JSP page that uses the bgColor request parameter to
set the background color of the page. Some results are shown in Figures
10–2, 10–3, and 10–4.

Listing 10.2 BGColor.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Color Testing</TITLE>
</HEAD>

<%
String bgColor = request.getParameter("bgColor");
boolean hasExplicitColor;
if (bgColor != null) {
 hasExplicitColor = true;
} else {
 hasExplicitColor = false;
 bgColor = "WHITE";
}
%>
<BODY BGCOLOR="<%= bgColor %>">
<H2 ALIGN="CENTER">Color Testing</H2>

<%
if (hasExplicitColor) {
 out.println("You supplied an explicit background color of " +
 bgColor + ".");
} else {
 out.println("Using default background color of WHITE. " +
 "Supply the bgColor request attribute to try " +
 "a standard color, an RRGGBB value, or to see " +
 "if your browser supports X11 color names.");
}
%>

</BODY>
</HTML>
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

240 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 10–2 Default result of BGColor.jsp.

Figure 10–3 Result of BGColor.jsp when accessed with a bgColor parameter
having the RGB value C0C0C0.
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.3 JSP Scriptlets 241

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Using Scriptlets to Make Parts of the JSP File
Conditional

Another use of scriptlets is to conditionally include standard HTML and JSP
constructs. The key to this approach is the fact that code inside a scriptlet
gets inserted into the resultant servlet’s _jspService method (called by
service) exactly as written, and any static HTML (template text) before or
after a scriptlet gets converted to print statements. This means that script-
lets need not contain complete Java statements, and blocks left open can
affect the static HTML or JSP outside of the scriptlets. For example, con-
sider the following JSP fragment containing mixed template text and script-
lets.

<% if (Math.random() < 0.5) { %>
Have a nice day!
<% } else { %>
Have a lousy day!
<% } %>

Figure 10–4 Result of BGColor.jsp when accessed with a bgColor parameter
having the X11 color value papayawhip.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

242 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
When converted to a servlet by the JSP engine, this fragment will result in
something similar to the following.

if (Math.random() < 0.5) {
 out.println("Have a nice day!");
} else {
 out.println("Have a lousy day!");
}

Special Scriptlet Syntax

There are two special constructs you should take note of. First, if you want to
use the characters %> inside a scriptlet, enter %\> instead. Second, the XML
equivalent of <% Code %> is

<jsp:scriptlet>
Code
</jsp:scriptlet>

The two forms are treated identically by JSP engines.

10.4 JSP Declarations

A JSP declaration lets you define methods or fields that get inserted into the
main body of the servlet class (outside of the _jspService method that is
called by service to process the request). A declaration has the following form:

<%! Java Code %>

Since declarations do not generate any output, they are normally used in
conjunction with JSP expressions or scriptlets. For example, here is a JSP
fragment that prints the number of times the current page has been
requested since the server was booted (or the servlet class was changed and
reloaded). Recall that multiple client requests to the same servlet result only
in multiple threads calling the service method of a single servlet instance.
They do not result in the creation of multiple servlet instances except possibly
when the servlet implements SingleThreadModel. For a discussion of Sin-
gleThreadModel, see Section 2.6 (The Servlet Life Cycle) and Section 11.3
(The isThreadSafe Attribute). Thus, instance variables (fields) of a servlet are
shared by multiple requests and accessCount does not have to be declared
static below.

<%! private int accessCount = 0; %>
Accesses to page since server reboot:
<%= ++accessCount %>
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.4 JSP Declarations 243

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 10.3 shows the full JSP page; Figure 10–5 shows a representative
result.

Listing 10.3 AccessCounts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Declarations</TITLE>
<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"
 CONTENT="JSP,declarations,JavaServer,Pages,servlets">
<META NAME="description"
 CONTENT="A quick example of JSP declarations.">
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>JSP Declarations</H1>

<%! private int accessCount = 0; %>
<H2>Accesses to page since server reboot:
<%= ++accessCount %></H2>

</BODY>
</HTML>

Figure 10–5 Visiting AccessCounts.jsp after it has been requested 15 times by
the same or different clients.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

244 Chapter 10 JSP Scripting Elements

Second editi
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Special Declaration Syntax

As with scriptlets, if you want to use the characters %>, enter %\> instead.
Finally, note that the XML equivalent of <%! Code %> is

<jsp:declaration>

Code

</jsp:declaration>

10.5 Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight
automatically defined variables, sometimes called implicit objects. Since JSP
declarations (see Section 10.4) result in code that appears outside of the
_jspService method, these variables are not accessible in declarations. The
available variables are request, response, out, session, application,
config, pageContext, and page. Details for each are given below.

request
This variable is the HttpServletRequest associated with the request;
it gives you access to the request parameters, the request type (e.g., GET
or POST), and the incoming HTTP headers (e.g., cookies). Strictly
speaking, if the protocol in the request is something other than HTTP,
request is allowed to be a subclass of ServletRequest other than
HttpServletRequest. However, few, if any, JSP servers currently sup-
port non-HTTP servlets.

response
This variable is the HttpServletResponse associated with the
response to the client. Note that since the output stream (see out) is
normally buffered, it is legal to set HTTP status codes and response
headers in JSP pages, even though the setting of headers or status codes
is not permitted in servlets once any output has been sent to the client.

out
This is the PrintWriter used to send output to the client. However, to
make the response object useful, this is a buffered version of Print-
Writer called JspWriter. You can adjust the buffer size through use of
the buffer attribute of the page directive (see Section 11.5). Also note
on of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.5 Predefined Variables 245

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

that out is used almost exclusively in scriptlets, since JSP expressions
are automatically placed in the output stream and thus rarely need to
refer to out explicitly.

session
This variable is the HttpSession object associated with the request.
Recall that sessions are created automatically, so this variable is bound
even if there is no incoming session reference. The one exception is if
you use the session attribute of the page directive (see Section 11.4)
to turn sessions off. In that case, attempts to reference the session
variable cause errors at the time the JSP page is translated into a servlet.

application
This variable is the ServletContext as obtained via getServletCon-
fig().getContext(). Servlets and JSP pages can store persistent data
in the ServletContext object rather than in instance variables. Serv-
letContext has setAttribute and getAttribute methods that let
you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the Servlet-
Context is that the ServletContext is shared by all servlets in the serv-
let engine (or in the Web application, if your server supports such a
capability). For more information on the use of the ServletContext,
see Section 13.4 (Sharing Beans) and Chapter 15 (Integrating Servlets
and JSP).

config
This variable is the ServletConfig object for this page.

pageContext
JSP introduced a new class called PageContext to give a single point of
access to many of the page attributes and to provide a convenient place
to store shared data. The pageContext variable stores the value of the
PageContext object associated with the current page. See Section 13.4
(Sharing Beans) for a discussion of its use.

page
This variable is simply a synonym for this and is not very useful in the
Java programming language. It was created as a place holder for the
time when the scripting language could be something other than Java.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

	JSP Scripting Elements
	Topics in This Chapter
	10
	J
	10.1� Scripting Elements
	1. Expressions of the form <%= expression %>, which are evaluated and inserted into the servlet’s...
	2. Scriptlets of the form <% code %>, which are inserted into the servlet’s _jspService method (c...
	3. Declarations of the form <%! code %>, which are inserted into the body of the servlet class, o...
	Template Text

	10.2� JSP Expressions
	Predefined Variables
	XML Syntax for Expressions
	Using Expressions as Attribute Values
	Example
	Figure 10–1 Typical result of Expressions.jsp.

	10.3� JSP Scriptlets
	Figure 10–2 Default result of BGColor.jsp.
	Figure 10–3 Result of BGColor.jsp when accessed with a bgColor parameter having the RGB value C0C...
	Figure 10–4 Result of BGColor.jsp when accessed with a bgColor parameter having the X11 color val...
	Using Scriptlets to Make Parts of the JSP File Conditional
	Special Scriptlet Syntax

	10.4� JSP Declarations
	Figure 10–5 Visiting AccessCounts.jsp after it has been requested 15 times by the same or differe...
	Special Declaration Syntax

	10.5� Predefined Variables
	request
	response
	out
	session
	application
	config
	pageContext
	page

