
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

The JSP page
Directive:

Structuring
Generated

Servlets
Topics in This Chapter

• The purpose of the page directive

• Designating which classes are imported

• Using custom classes

• Specifying the MIME type of the page

• Generating Excel documents

• Controlling threading behavior

• Participating in sessions

• Setting the size and behavior of the output buffer

• Designating pages to process JSP errors

• XML-compatible syntax for directives
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
JSP directive affects the overall structure of the servlet that results
from the JSP page. The following templates show the two possible
forms for directives. Single quotes can be substituted for the double

quotes around the attribute values, but the quotation marks cannot be omit-
ted altogether. To obtain quote marks within an attribute value, precede
them with a back slash, using \’ for ’ and \" for ".

<%@ directive attribute="value" %>

<%@ directive attribute1="value1"
 attribute2="value2"
 ...
 attributeN="valueN" %>

In JSP, there are three types of directives: page, include, and taglib.
The page directive lets you control the structure of the servlet by importing
classes, customizing the servlet superclass, setting the content type, and the
like. A page directive can be placed anywhere within the document; its use is
the topic of this chapter. The second directive, include, lets you insert a file
into the servlet class at the time the JSP file is translated into a servlet. An
include directive should be placed in the document at the point at which
you want the file to be inserted; it is discussed in Chapter 12 (Including Files
and Applets in JSP Documents) for inserting files into JSP pages. JSP 1.1
introduces a third directive, taglib, which can be used to define custom

A

247

248 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
markup tags; it is discussed in Chapter 14 (Creating Custom JSP Tag Librar-
ies).

The page directive lets you define one or more of the following case-sen-
sitive attributes: import, contentType, isThreadSafe, session, buffer,
autoflush, extends, info, errorPage, isErrorPage, and language.
These attributes are explained in the following sections.

11.1 The import Attribute

The import attribute of the page directive lets you specify the packages that
should be imported by the servlet into which the JSP page gets translated. If
you don’t explicitly specify any classes to import, the servlet imports
java.lang.*, javax.servlet.*, javax.servlet.jsp.*, javax.serv-
let.http.*, and possibly some number of server-specific entries. Never
write JSP code that relies on any server-specific classes being imported auto-
matically. Use of the import attribute takes one of the following two forms:

<%@ page import="package.class" %>
<%@ page import="package.class1,...,package.classN" %>

For example, the following directive signifies that all classes in the
java.util package should be available to use without explicit package iden-
tifiers.

 <%@ page import="java.util.*" %>

The import attribute is the only page attribute that is allowed to appear
multiple times within the same document. Although page directives can
appear anywhere within the document, it is traditional to place import state-
ments either near the top of the document or just before the first place that
the referenced package is used.

Directories for Custom Classes

If you import classes that are not in any of the standard java or
javax.servlet packages, you need to be sure that those classes have been
properly installed on your server. In particular, most servers that support
automatic servlet reloading do not permit classes that are in the auto-reload-
ing directories to be referenced by JSP pages. The particular locations used
for servlet classes vary from server to server, so you should consult your
server’s documentation for definitive guidance. The locations used by Apache
Tomcat 3.0, the JSWDK 1.0.1, and the Java Web Server 2.0 are summarized
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.1 The import Attribute 249

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
in Table 11.1. All three of these servers also make use of JAR files in the lib
subdirectory, and in all three cases you must restart the server whenever you
change files in this directory.

Example

Listing 11.1 presents a page that uses three classes not in the standard JSP
import list: java.util.Date, coreservlets.ServletUtilities (see List-
ing 8.3), and coreservlets.LongLivedCookie (see Listing 8.4). To simplify
references to these classes, the JSP page uses

<%@ page import="java.util.*,coreservlets.*" %>

Figures 11–1 and 11–2 show some typical results.

Table 11.1 Class Installation Directories

Server

Location Relative
to Installation
Directory Use

Automatically
Reloaded
When Class
Changes?

Availab
le from
JSP
Pages?

Tomcat 3.0 webpages/WEB-INF/
classes

Standard location
for servlet classes

No Yes

Tomcat 3.0 classes Alternative loca-
tion for servlet
classes

No Yes

JSWDK
1.0.1

webpages/WEB-INF/
servlets

Standard location
for servlet classes

No Yes

JSWDK
1.0.1

classes Alternative loca-
tion for servlet
classes

No Yes

Java Web
Server 2.0

servlets Location for fre-
quently chang-
ing servlet classes

Yes No

Java Web
Server 2.0

classes Location for
infrequently
changing servlet
classes

No Yes
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

250 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 11.1 ImportAttribute.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>The import Attribute</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H2>The import Attribute</H2>
<%-- JSP page directive --%>
<%@ page import="java.util.*,coreservlets.*" %>

<%-- JSP Declaration (see Section 10.4) --%>
<%!
private String randomID() {
 int num = (int)(Math.random()*10000000.0);
 return("id" + num);
}

private final String NO_VALUE = "<I>No Value</I>";
%>

<%-- JSP Scriptlet (see Section 10.3) --%>
<%
Cookie[] cookies = request.getCookies();
String oldID =
 ServletUtilities.getCookieValue(cookies, "userID", NO_VALUE);
String newID;
if (oldID.equals(NO_VALUE)) {
 newID = randomID();
} else {
 newID = oldID;
}
LongLivedCookie cookie = new LongLivedCookie("userID", newID);
response.addCookie(cookie);
%>

<%-- JSP Expressions (see Section 10.2) --%>
This page was accessed at <%= new Date() %> with a userID
cookie of <%= oldID %>.

</BODY>
</HTML>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 251

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
11.2 The contentType Attribute

The contentType attribute sets the Content-Type response header, indicat-
ing the MIME type of the document being sent to the client. For more infor-
mation on MIME types, see Table 7.1 (Common MIME Types) in Section
7.2 (HTTP 1.1 Response Headers and Their Meaning).

Figure 11–1 ImportAttribute.jsp when first accessed.

Figure 11–2 ImportAttribute.jsp when accessed in a subsequent visit.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

252 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Use of the contentType attribute takes one of the following two forms:
 <%@ page contentType="MIME-Type" %>
 <%@ page contentType="MIME-Type; charset=Character-Set" %>

For example, the directive
 <%@ page contentType="text/plain" %>

has the same effect as the scriptlet
 <% response.setContentType("text/plain"); %>

Unlike regular servlets, where the default MIME type is text/plain, the
default for JSP pages is text/html (with a default character set of
ISO-8859-1).

Generating Plain Text Documents

Listing 11.2 shows a document that appears to be HTML but has a content-
Type of text/plain. Strictly speaking, browsers are supposed to display the
raw HTML content in such a case, as shown in Netscape in Figure 11–3.
Internet Explorer, however, interprets the document as though it were of
type text/html, as shown in Figure 11–4.

Listing 11.2 ContentType.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>The contentType Attribute</TITLE>
</HEAD>
<BODY>

<H2>The contentType Attribute</H2>
<%@ page contentType="text/plain" %>
This should be rendered as plain text,
not as HTML.

</BODY>
</HTML>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 253

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Figure 11–3 For plain text documents, Netscape does not try to interpret HTML tags.

Figure 11–4 Internet Explorer interprets HTML tags in plain text documents.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

254 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Generating Excel Spreadsheets

You can create simple Microsoft Excel spreadsheets by specifying applica-
tion/vnd.ms-excel as the content type and then formatting the spread-
sheet entries in one of two ways.

One way to format the content is to put rows on separate lines of the docu-
ment and to use tabs between each of the columns. Listing 11.3 shows a sim-
ple example, and Figures 11–5 and 11–6 show the results of loading the page
in Netscape on a system with Excel installed. Of course, in a real application,
the entries would probably be generated dynamically, perhaps by a JSP
expression or scriptlet that refers to database values that were accessed with
JDBC (see Chapter 18).

Listing 11.3 Excel.jsp

<%@ page contentType="application/vnd.ms-excel" %>
<%-- Note that there are tabs, not spaces, between columns. --%>
1997 1998 1999 2000 2001 (Anticipated)
12.3 13.4 14.5 15.6 16.7

Figure 11–5 With the default browser settings, Netscape prompts you before allowing
Excel content.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 255

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
A second way to format Excel content is to use a normal HTML table,
which recent versions of Excel can interpret properly as long as the page is
marked with the proper MIME type. This capability suggests a simple
method of returning either HTML or Excel content, depending on which
the user prefers: just use an HTML table and set the content type to
application/vnd.ms-excel only if the user requests the results in Excel.
Unfortunately, this approach brings to light a small deficiency in the page
directive: attribute values cannot be computed at run time, nor can page
directives be conditionally inserted as can template text. So, the following
attempt results in Excel content regardless of the result of the checkUser-
Request method.

<% boolean usingExcel = checkUserRequest(request); %>

<% if (usingExcel) { %>

<%@ page contentType="application/vnd.ms-excel" %>

<% } %>

Fortunately, there is a simple solution to the problem of conditionally set-
ting the content type: just use scriptlets and the normal servlet approach of
response.setContentType, as in the following snippet:

<%

String format = request.getParameter("format");

if ((format != null) && (format.equals("excel"))) {

 response.setContentType("application/vnd.ms-excel");

}

%>

Figure 11–6 Result of Excel.jsp on system that has Excel installed.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

256 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 11.4 shows a page that uses this approach; Figures 11–7 and 11–8
show the results in Internet Explorer. Again, in a real application the data
would almost certainly be dynamically generated. For example, see Section
18.3 (Some JDBC Utilities) for some very simple methods to create an HTML
table (usable in HTML or as an Excel spreadsheet) from a database query.

Listing 11.4 ApplesAndOranges.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Comparing Apples and Oranges</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<CENTER>
<H2>Comparing Apples and Oranges</H2>

<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
 response.setContentType("application/vnd.ms-excel");
}
%>

<TABLE BORDER=1>
 <TR><TH></TH><TH>Apples<TH>Oranges
 <TR><TH>First Quarter<TD>2307<TD>4706
 <TR><TH>Second Quarter<TD>2982<TD>5104
 <TR><TH>Third Quarter<TD>3011<TD>5220
 <TR><TH>Fourth Quarter<TD>3055<TD>5287
</TABLE>

</CENTER>
</BODY>
</HTML>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 257

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Figure 11–7 The default result of ApplesAndOranges.jsp is HTML content.

Figure 11–8 Specifying format=excel for ApplesAndOranges.jsp results in
Excel content.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

258 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
11.3 The isThreadSafe Attribute

The isThreadSafe attribute controls whether or not the servlet that results
from the JSP page will implement the SingleThreadModel interface. Use of
the isThreadSafe attribute takes one of the following two forms:

<%@ page isThreadSafe="true" %> <%!-- Default --%>
<%@ page isThreadSafe="false" %>

With normal servlets, simultaneous user requests result in multiple
threads concurrently accessing the service method of the same servlet
instance. This behavior assumes that the servlet is thread safe; that is, that the
servlet synchronizes access to data in its fields so that inconsistent values will
not result from an unexpected ordering of thread execution. In some cases
(such as page access counts), you may not care if two visitors occasionally get
the same value, but in other cases (such as user IDs), identical values can
spell disaster. For example, the following snippet is not thread safe since a
thread could be preempted after reading idNum but before updating it, yield-
ing two users with the same user ID.

<%! private int idNum = 0; %>
<%
String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");
idNum = idNum + 1;
%>

The code should have used a synchronized block. This construct is written
synchronized(someObject) { ... }

and means that once a thread enters the block of code, no other thread can
enter the same block (or any other block marked with the same object refer-
ence) until the first thread exits. So, the previous snippet should have been
written in the following manner.

<%! private int idNum = 0; %>
<%
synchronized(this) {

String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");
idNum = idNum + 1;

}
%>

That’s the normal servlet behavior: multiple simultaneous requests are dis-
patched to multiple threads concurrently accessing the same servlet instance.
However, if a servlet implements the SingleThreadModel interface, the sys-
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.4 The session Attribute 259

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
tem guarantees that there will not be simultaneous access to the same servlet
instance. The system can satisfy this guarantee either by queuing up all
requests and passing them to the same servlet instance or by creating a pool
of instances, each of which handles a single request at a time.

You use <%@ page isThreadSafe="false" %> to indicate that your code
is not thread safe and thus that the resulting servlet should implement Sin-
gleThreadModel. (See Section 2.6 (The Servlet Life Cycle.) The default
value is true, which means that the system assumes you made your code
thread safe, and it can consequently use the higher-performance approach of
multiple simultaneous threads accessing a single servlet instance. Be careful
about using isThreadSafe="false" when your servlet has instance vari-
ables (fields) that maintain persistent data. In particular, note that servlet
engines are permitted (but not required) to create multiple servlet instances
in such a case and thus instance variables are not necessarily unique. You
could still use static fields in such a case, however.

11.4 The session Attribute

The session attribute controls whether or not the page participates in
HTTP sessions. Use of this attribute takes one of the following two forms:

<%@ page session="true" %> <%-- Default --%>

<%@ page session="false" %>

A value of true (the default) indicates that the predefined variable ses-
sion (of type HttpSession) should be bound to the existing session if one
exists; otherwise, a new session should be created and bound to session. A
value of false means that no sessions will be used automatically and
attempts to access the variable session will result in errors at the time the
JSP page is translated into a servlet.

11.5 The buffer Attribute

The buffer attribute specifies the size of the buffer used by the out variable,
which is of type JspWriter (a subclass of PrintWriter). Use of this
attribute takes one of two forms:

<%@ page buffer="sizekb" %>

<%@ page buffer="none" %>
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

260 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Servers can use a larger buffer than you specify, but not a smaller one. For
example, <%@ page buffer="32kb" %> means the document content
should be buffered and not sent to the client until at least 32 kilobytes have
been accumulated or the page is completed. The default buffer size is server
specific, but must be at least 8 kilobytes. Be cautious about turning off buff-
ering; doing so requires JSP entries that set headers or status codes to appear
at the top of the file, before any HTML content.

11.6 The autoflush Attribute

The autoflush attribute controls whether the output buffer should be auto-
matically flushed when it is full or whether an exception should be raised
when the buffer overflows. Use of this attribute takes one of the following
two forms:

<%@ page autoflush="true" %> <%-- Default --%>

<%@ page autoflush="false" %>

A value of false is illegal when also using buffer="none".

11.7 The extends Attribute

The extends attribute indicates the superclass of the servlet that will be gen-
erated for the JSP page and takes the following form:

<%@ page extends="package.class" %>

Use this attribute with extreme caution since the server may be using a
custom superclass already.

11.8 The info Attribute

The info attribute defines a string that can be retrieved from the servlet by
means of the getServletInfo method. Use of info takes the following
form:

<%@ page info="Some Message" %>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.9 The errorPage Attribute 261

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
11.9 The errorPage Attribute

The errorPage attribute specifies a JSP page that should process any excep-
tions (i.e., something of type Throwable) thrown but not caught in the cur-
rent page. It is used as follows:

<%@ page errorPage="Relative URL" %>

The exception thrown will be automatically available to the designated
error page by means of the exception variable. See Listings 11.5 and 11.6
for examples.

11.10 The isErrorPage Attribute

The isErrorPage attribute indicates whether or not the current page can act
as the error page for another JSP page. Use of isErrorPage takes one of the
following two forms:

<%@ page isErrorPage="true" %>
<%@ page isErrorPage="false" %> <%!-- Default --%>

For example, Listing 11.5 shows a JSP page to compute speed based upon
distance and time parameters. The page neglects to check if the input param-
eters are missing or malformed, so an error could easily occur at run time.
However, the page designated SpeedErrors.jsp (Listing 11.6) as the page
to handle errors that occur in ComputeSpeed.jsp, so the user does not
receive the typical terse JSP error messages. Figures 11–9 and 11–10 show
results when good and bad input parameters are received, respectively.

Listing 11.5 ComputeSpeed.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Computing Speed</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<%@ page errorPage="SpeedErrors.jsp" %>
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

262 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Computing Speed</TABLE>

<%!
// Note lack of try/catch for NumberFormatException if
// value is null or malformed.

private double toDouble(String value) {
 return(Double.valueOf(value).doubleValue());
}
%>

<%
double furlongs = toDouble(request.getParameter("furlongs"));
double fortnights = toDouble(request.getParameter("fortnights"));
double speed = furlongs/fortnights;
%>

 Distance: <%= furlongs %> furlongs.
 Time: <%= fortnights %> fortnights.
 Speed: <%= speed %> furlongs per fortnight.

</BODY>
</HTML>

Listing 11.6 SpeedErrors.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Error Computing Speed</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<%@ page isErrorPage="true" %>

<TABLE BORDER=5 ALIGN="CENTER">

Listing 11.5 ComputeSpeed.jsp (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.10 The isErrorPage Attribute 263

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
 <TR><TH CLASS="TITLE">
 Error Computing Speed</TABLE>
<P>
ComputeSpeed.jsp reported the following error:
<I><%= exception %></I>. This problem occurred in the
following place:
<PRE>
<% exception.printStackTrace(new PrintWriter(out)); %>
</PRE>

</BODY>
</HTML>

Listing 11.6 SpeedErrors.jsp (continued)

Figure 11–9 ComputeSpeed.jsp when it receives legal values.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

264 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
11.11 The language Attribute

At some point, the language attribute is intended to specify the underlying
programming language being used, as below.

<%@ page language="cobol" %>

For now, don’t bother with this attribute since java is both the default and
the only legal choice.

Figure 11–10 ComputeSpeed.jsp when it receives illegal values.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.12 XML Syntax for Directives 265

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
11.12 XML Syntax for Directives

JSP permits you to use an alternative XML-compatible syntax for directives.
These constructs take the following form:

<jsp:directive.directiveType attribute="value" />

For example, the XML equivalent of
<%@ page import="java.util.*" %>

is
<jsp:directive.page import="java.util.*" />
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

	The JSP page Directive: Structuring Generated �Servlets
	Topics in This Chapter
	11
	A
	11.1� The import Attribute
	Directories for Custom Classes
	Example
	Figure 11–1 ImportAttribute.jsp when first accessed.
	Figure 11–2 ImportAttribute.jsp when accessed in a subsequent visit.

	11.2� The contentType Attribute
	Generating Plain Text Documents
	Figure 11–3 For plain text documents, Netscape does not try to interpret HTML tags.
	Figure 11–4 Internet Explorer interprets HTML tags in plain text documents.

	Generating Excel Spreadsheets
	Figure 11–5 With the default browser settings, Netscape prompts you before allowing Excel content.
	Figure 11–6 Result of Excel.jsp on system that has Excel installed.
	Figure 11–7 The default result of ApplesAndOranges.jsp is HTML content.
	Figure 11–8 Specifying format=excel for ApplesAndOranges.jsp results in Excel content.

	11.3� The isThreadSafe Attribute
	11.4� The session Attribute
	11.5� The buffer Attribute
	11.6� The autoflush Attribute
	11.7� The extends Attribute
	11.8� The info Attribute
	11.9� The errorPage Attribute
	11.10� The isErrorPage Attribute
	Figure 11–9 ComputeSpeed.jsp when it receives legal values.
	Figure 11–10 �ComputeSpeed.jsp when it receives illegal values.

	11.11� The language Attribute
	11.12� XML Syntax for Directives

