
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Handling the
Client Request:

Form Data
Topics in This Chapter

• Using getParameter to read single values from
prespecified parameters in the form data

• Using getParameterValues to read multiple values from
prespecified parameters in the form data

• Using getParameterNames to discover what parameters
are available

• Handling both GET and POST requests with a single servlet

• A servlet that makes a table of the input parameters

• An on-line resumé posting service

• Filtering HTML-specific characters
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ne of the main motivations for building Web pages dynamically is so
that the result can be based upon user input. This chapter shows you
how to access that input.

3.1 The Role of Form Data

If you’ve ever used a search engine, visited an on-line bookstore,
tracked stocks on the Web, or asked a Web-based site for quotes on
plane tickets, you’ve probably seen funny-looking URLs like
http://host/path?user=Marty+Hall&origin=bwi&dest=lax. The
part after the question mark (i.e., user=Marty+Hall&origin=
bwi&dest=lax) is known as form data (or query data) and is the most com-
mon way to get information from a Web page to a server-side program.
Form data can be attached to the end of the URL after a question mark (as
above), for GET requests, or sent to the server on a separate line, for POST
requests. If you’re not familiar with HTML forms, Chapter 16 (Using
HTML Forms) gives details on how to build forms that collect and transmit
data of this sort.

Extracting the needed information from this form data is traditionally one
of the most tedious parts of CGI programming. First of all, you have to read

O

65

66 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
the data one way for GET requests (in traditional CGI, this is usually through
the QUERY_STRING environment variable) and a different way for POST
requests (by reading the standard input in traditional CGI). Second, you have
to chop the pairs at the ampersands, then separate the parameter names (left
of the equal signs) from the parameter values (right of the equal signs).
Third, you have to URL-decode the values. Alphanumeric characters are sent
unchanged, but spaces are converted to plus signs and other characters are
converted to %XX where XX is the ASCII (or ISO Latin-1) value of the char-
acter, in hex. Then, the server-side program has to reverse the process. For
example, if someone enters a value of “~hall, ~gates, and ~mcnealy”
into a textfield with the name users in an HTML form, the data is sent as
“users=%7Ehall%2C+%7Egates%2C+and+%7Emcnealy”, and the
server-side program has to reconstitute the original string. Finally, the fourth
reason that parsing form data is tedious is that values can be omitted (e.g.,
“param1=val1¶m2=¶m3=val3”) or a parameter can have more
than one value (e.g., “param1=val1¶m2=val2¶m1=val3”), so
your parsing code needs special cases for these situations.

3.2 Reading Form Data from
Servlets

One of the nice features of servlets is that all of this form parsing is handled
automatically. You simply call the getParameter method of the Http-
ServletRequest, supplying the case-sensitive parameter name as an argu-
ment. You use getParameter exactly the same way when the data is sent by
GET as you do when it is sent by POST. The servlet knows which request
method was used and automatically does the right thing behind the scenes.
The return value is a String corresponding to the URL-decoded value of
the first occurrence of that parameter name. An empty String is returned if
the parameter exists but has no value, and null is returned if there was no
such parameter. If the parameter could potentially have more than one value,
you should call getParameterValues (which returns an array of strings)
instead of getParameter (which returns a single string). The return value of
getParameterValues is null for nonexistent parameter names and is a
one-element array when the parameter has only a single value.

Parameter names are case sensitive so, for example, request.get-
Parameter("Param1") and request.getParameter("param1") are
not interchangeable.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.3 Example: Reading Three Explicit Parameters 67

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Core Warning

The values supplied to getParameter and getParameterValues
are case sensitive.

Finally, although most real servlets look for a specific set of parameter
names, for debugging purposes it is sometimes useful to get a full list. Use
getParameterNames to get this list in the form of an Enumeration, each
entry of which can be cast to a String and used in a getParameter or get-
ParameterValues call. Just note that the HttpServletRequest API
does not specify the order in which the names appear within that Enumer-
ation.

Core Warning

Don’t count on getParameterNames returning the names in any
particular order.

3.3 Example: Reading Three
Explicit Parameters

Listing 3.1 presents a simple servlet called ThreeParams that reads form
data parameters named param1, param2, and param3 and places their val-
ues in a bulleted list. Listing 3.2 shows an HTML form that collects user
input and sends it to this servlet. By use of an ACTION of /servlet/core-
servlets.ThreeParams, the form can be installed anywhere on the system
running the servlet; there need not be any particular association between the
directory containing the form and the servlet installation directory. Recall
that the specific locations for installing HTML files vary from server to
server. With the JSWDK 1.0.1 and Tomcat 3.0, HTML pages are placed
somewhere in install_dir/webpages and are accessed via
http://host/path/file.html. For example, if the form shown in Listing
3.2 is placed in install_dir/webpages/forms/ThreeParams-

Form.html and the server is accessed from the same host that it is running
on, the form would be accessed by a URL of http://local-
host/forms/ThreeParamsForm.html.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

68 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figures 3–1 and 3–2 show the result of the HTML front end and the serv-
let, respectively.

Although you are required to specify response settings (see Chapters 6 and
7) before beginning to generate the content, there is no requirement that you
read the request parameters at any particular time.

If you’re accustomed to the traditional CGI approach where you read
POST data through the standard input, you should note that you can do the
same thing with servlets by calling getReader or getInputStream on the
HttpServletRequest and then using that stream to obtain the raw input.
This is a bad idea for regular parameters since the input is neither parsed
(separated into entries specific to each parameter) nor URL-decoded
(translated so that plus signs become spaces and %XX gets replaced by the

Listing 3.1 ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading Three Request Parameters";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "\n" +
 " param1: "
 + request.getParameter("param1") + "\n" +
 " param2: "
 + request.getParameter("param2") + "\n" +
 " param3: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.3 Example: Reading Three Explicit Parameters 69

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

ASCII or ISO Latin-1 character corresponding to the hex value XX). How-
ever, reading the raw input might be of use for uploaded files or POST data
being sent by custom clients rather than by HTML forms. Note, however,
that if you read the POST data in this manner, it might no longer be found
by getParameter.

Listing 3.2 ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/coreservlets.ThreeParams">
 First Parameter: <INPUT TYPE="TEXT" NAME="param1">

 Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

 Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>

Figure 3–1 HTML front end resulting from ThreeParamsForm.html.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

70 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
3.4 Example: Reading All
Parameters

The previous example extracted parameter values from the form data based
upon prespecified parameter names. It also assumed that each parameter
had exactly one value. Here’s an example that looks up all the parameter
names that are sent and puts their values in a table. It highlights parameters
that have missing values as well as ones that have multiple values.

First, the servlet looks up all the parameter names by the getParameter-
Names method of HttpServletRequest. This method returns an Enumera-
tion that contains the parameter names in an unspecified order. Next, the
servlet loops down the Enumeration in the standard manner, using has-
MoreElements to determine when to stop and using nextElement to get
each entry. Since nextElement returns an Object, the servlet casts the result
to a String and passes that to getParameterValues, yielding an array of
strings. If that array is one entry long and contains only an empty string, then
the parameter had no values and the servlet generates an italicized “No Value”
entry. If the array is more than one entry long, then the parameter had multiple
values and the values are displayed in a bulleted list. Otherwise, the one main
value is placed into the table unmodified. The source code for the servlet is
shown in Listing 3.3, while Listing 3.4 shows the HTML code for a front
end that can be used to try the servlet out. Figures 3–3 and 3–4 show the
result of the HTML front end and the servlet, respectively.

Figure 3–2 Output of ThreeParams servlet.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.4 Example: Reading All Parameters 71

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Notice that the servlet uses a doPost method that simply calls doGet.
That’s because I want it to be able to handle both GET and POST requests.
This approach is a good standard practice if you want HTML interfaces to
have some flexibility in how they send data to the servlet. See the discussion
of the service method in Section 2.6 (The Servlet Life Cycle) for a discus-
sion of why having doPost call doGet (or vice versa) is preferable to overrid-
ing service directly. The HTML form from Listing 3.4 uses POST, as
should all forms that have password fields (if you don’t know why, see
Chapter 16). However, the ShowParameters servlet is not specific to that
particular front end, so the source code archive site at www.coreserv-
lets.com includes a similar HTML form that uses GET for you to experi-
ment with.

Listing 3.3 ShowParameters.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ShowParameters extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading All Request Parameters";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Parameter Name<TH>Parameter Value(s)");
 Enumeration paramNames = request.getParameterNames();
 while(paramNames.hasMoreElements()) {
 String paramName = (String)paramNames.nextElement();
 out.print("<TR><TD>" + paramName + "\n<TD>");
 String[] paramValues =
 request.getParameterValues(paramName);
 if (paramValues.length == 1) {
 String paramValue = paramValues[0];
 if (paramValue.length() == 0)
 out.println("<I>No Value</I>");
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

72 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 else
 out.println(paramValue);
 } else {
 out.println("");
 for(int i=0; i<paramValues.length; i++) {
 out.println("" + paramValues[i]);
 }
 out.println("");
 }
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 3.4 ShowParametersPostForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>A Sample FORM using POST</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1>

<FORM ACTION="/servlet/coreservlets.ShowParameters"
 METHOD="POST">
 Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

 Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

 <HR>
 First Name: <INPUT TYPE="TEXT" NAME="firstName">

 Last Name: <INPUT TYPE="TEXT" NAME="lastName">

 Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

 Shipping Address:
 <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

 Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Master Card">Master Card

Listing 3.3 ShowParameters.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.4 Example: Reading All Parameters 73

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Java SmartCard">Java SmartCard

 Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 Repeat Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 <CENTER>
 <INPUT TYPE="SUBMIT" VALUE="Submit Order">
 </CENTER>
</FORM>

</BODY>
</HTML>

Listing 3.4 ShowParametersPostForm.html (continued)

Figure 3–3 HTML front end that collects data for ShowParameters servlet.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

74 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
3.5 A Resumé Posting Service

On-line job services have become increasingly popular of late. A reputable
site provides a useful service to job seekers by giving their skills wide expo-
sure and provides a useful service to employers by giving them access to a
large pool of prospective employees. This section presents a servlet that han-
dles part of such a site: the submission of on-line resumés.

Listing 3.5 and Figure 3–5 show the HTML form that acts as the front end
to the resumé-processing servlet. If you are not familiar with HTML forms,
they are covered in detail in Chapter 16. The important thing to understand
here is that the form uses POST to submit the data and that it gathers values
for the following parameter names:

Figure 3–4 Output of ShowParameters servlet.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 75

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

• headingFont

Headings will be displayed in this font. A value of “default”
results in a sans-serif font such as Arial or Helvetica.

• headingSize

The person’s name will be displayed in this point size.
Subheadings will be displayed in a slightly smaller size.

• bodyFont

The main text (languages and skills) will be displayed in this font.
• bodySize

The main text will be displayed in this point size.
• fgColor

Text will be this color.
• bgColor

The page background will be this color.
• name

This parameter specifies the person’s name. It will be centered
at the top of the resumé in the font and point size previously
specified.

• title

This parameter specifies the person’s job title. It will be
centered under the name in a slightly smaller point size.

• email

The job applicant’s email address will be centered under the job
title inside a mailto link.

• languages

The programming languages listed will be placed in a bulleted
list in the on-line resumé.

• skills

Text from the skills text area will be displayed in the body font at the
bottom of the resumé under a heading called “Skills and Experience.”

DILBERT reprinted by permission of United Syndicate, Inc.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

76 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 3.6 shows the servlet that processes the data from the HTML form.
When the “Preview” button is pressed, the servlet first reads the font and color
parameters. Before using any of the parameters, it checks to see if the value is
null (i.e., there is an error in the HTML form and thus the parameter is missing)
or is an empty string (i.e., the user erased the default value but did not enter any-
thing in its place). The servlet uses a default value appropriate to each parameter
in such a case. Parameters that represent numeric values are passed to
Integer.parseInt. To guard against the possibility of improperly formatted
numbers supplied by the user, this Integer.parseInt call is placed inside a
try/catch block that supplies a default value when the parsing fails. Although it
may seem a bit tedious to handle these cases, it generally is not too much work if
you make use of some utility methods such as replaceIfMissing and repla-
ceIfMissingOrDefault in Listing 3.6. Tedious or not, users will sometimes
overlook certain fields or misunderstand the required field format, so it is critical
that your servlet handle malformed parameters gracefully and that you test it with
both properly formatted and improperly formatted data.

Core Approach

Design your servlets to gracefully handle missing or improperly formatted
parameters. Test them with malformed data as well as with data in the
expected format.

Once the servlet has meaningful values for each of the font and color
parameters, it builds a cascading style sheet out of them. If you are unfamiliar
with style sheets, they are a standard way of specifying the font faces, font
sizes, colors, indentation, and other formatting information in an HTML 4.0
Web page. Style sheets are usually placed in a separate file so that several
Web pages at a site can share the same style sheet, but in this case it is
more convenient to embed the style information directly in the page by
using the STYLE element. For more information on style sheets, see
http://www.w3.org/TR/REC-CSS1.

After creating the style sheet, the servlet places the job applicant’s name,
job title, and e-mail address centered under each other at the top of the page.
The heading font is used for these lines, and the e-mail address is placed
inside a mailto: hypertext link so that prospective employers can contact
the applicant directly by clicking on the address. The programming languages
specified in the languages parameter are parsed using StringTokenizer
(assuming spaces and/or commas are used to separate the language names)
and placed in a bulleted list beneath a “Programming Languages” heading.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 77

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Finally, the text from the skills parameter is placed at the bottom of the
page beneath a “Skills and Experience” heading.

Figures 3–6 through 3–8 show a couple of possible results. Listing 3.7
shows the underlying HTML of the first of these results.

Listing 3.5 SubmitResume.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Free Resume Posting</TITLE>
 <LINK REL=STYLESHEET
 HREF="jobs-site-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>hotcomputerjobs.com</H1>
<P CLASS="LARGER">
To use our <I>free</I> resume-posting service, simply fill
out the brief summary of your skills below. Use "Preview"
to check the results, then press "Submit" once it is
ready. Your mini resume will appear on-line within 24 hours.</P>
<HR>
<FORM ACTION="/servlet/coreservlets.SubmitResume"
 METHOD="POST">
<DL>
<DT>First, give some general information about the look of
your resume:
<DD>Heading font:
 <INPUT TYPE="TEXT" NAME="headingFont" VALUE="default">
<DD>Heading text size:
 <INPUT TYPE="TEXT" NAME="headingSize" VALUE=32>
<DD>Body font:
 <INPUT TYPE="TEXT" NAME="bodyFont" VALUE="default">
<DD>Body text size:
 <INPUT TYPE="TEXT" NAME="bodySize" VALUE=18>
<DD>Foreground color:
 <INPUT TYPE="TEXT" NAME="fgColor" VALUE="BLACK">
<DD>Background color:
 <INPUT TYPE="TEXT" NAME="bgColor" VALUE="WHITE">

<DT>Next, give some general information about yourself:
<DD>Name: <INPUT TYPE="TEXT" NAME="name">
<DD>Current or most recent title:
 <INPUT TYPE="TEXT" NAME="title">
<DD>Email address: <INPUT TYPE="TEXT" NAME="email">
<DD>Programming Languages:
 <INPUT TYPE="TEXT" NAME="languages">
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

78 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<DT>Finally, enter a brief summary of your skills and
 experience: (use <P> to separate paragraphs.
 Other HTML markup is also permitted.)
<DD><TEXTAREA NAME="skills"
 ROWS=15 COLS=60 WRAP="SOFT"></TEXTAREA>
</DL>
 <CENTER>
 <INPUT TYPE="SUBMIT" NAME="previewButton" Value="Preview">
 <INPUT TYPE="SUBMIT" NAME="submitButton" Value="Submit">
 </CENTER>
</FORM>
<HR>
<P CLASS="TINY">See our privacy policy
here.</P>
</BODY>
</HTML>

Listing 3.6 SubmitResume.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that handles previewing and storing resumes
 * submitted by job applicants.
*/

public class SubmitResume extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 if (request.getParameter("previewButton") != null) {
 showPreview(request, out);
 } else {
 storeResume(request);
 showConfirmation(request, out);
 }
 }

Listing 3.5 SubmitResume.html (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 79

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 // Shows a preview of the submitted resume. Takes
 // the font information and builds an HTML
 // style sheet out of it, then takes the real
 // resume information and presents it formatted with
 // that style sheet.

 private void showPreview(HttpServletRequest request,
 PrintWriter out) {
 String headingFont = request.getParameter("headingFont");
 headingFont = replaceIfMissingOrDefault(headingFont, "");
 int headingSize =
 getSize(request.getParameter("headingSize"), 32);
 String bodyFont = request.getParameter("bodyFont");
 bodyFont = replaceIfMissingOrDefault(bodyFont, "");
 int bodySize =
 getSize(request.getParameter("bodySize"), 18);
 String fgColor = request.getParameter("fgColor");
 fgColor = replaceIfMissing(fgColor, "BLACK");
 String bgColor = request.getParameter("bgColor");
 bgColor = replaceIfMissing(bgColor, "WHITE");
 String name = request.getParameter("name");
 name = replaceIfMissing(name, "Lou Zer");
 String title = request.getParameter("title");
 title = replaceIfMissing(title, "Loser");
 String email = request.getParameter("email");
 email =
 replaceIfMissing(email, "contact@hotcomputerjobs.com");
 String languages = request.getParameter("languages");
 languages = replaceIfMissing(languages, "<I>None</I>");
 String languageList = makeList(languages);
 String skills = request.getParameter("skills");
 skills = replaceIfMissing(skills, "Not many, obviously.");
 out.println
 (ServletUtilities.DOCTYPE + "\n" +
 "<HTML>\n" +
 "<HEAD>\n" +
 "<TITLE>Resume for " + name + "</TITLE>\n" +
 makeStyleSheet(headingFont, headingSize,
 bodyFont, bodySize,
 fgColor, bgColor) + "\n" +
 "</HEAD>\n" +
 "<BODY>\n" +
 "<CENTER>\n"+
 "" + name + "
\n" +
 "" + title + "
\n" +
 "" + email +
 "\n" +

Listing 3.6 SubmitResume.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

80 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 "</CENTER>

\n" +
 "Programming Languages" +
 "\n" +
 makeList(languages) + "

\n" +
 "Skills and Experience" +
 "

\n" +
 skills + "\n" +
 "</BODY></HTML>");
 }

 // Builds a cascading style sheet with information
 // on three levels of headings and overall
 // foreground and background cover. Also tells
 // Internet Explorer to change color of mailto link
 // when mouse moves over it.

 private String makeStyleSheet(String headingFont,
 int heading1Size,
 String bodyFont,
 int bodySize,
 String fgColor,
 String bgColor) {
 int heading2Size = heading1Size*7/10;
 int heading3Size = heading1Size*6/10;
 String styleSheet =
 "<STYLE TYPE=\"text/css\">\n" +
 "<!--\n" +
 ".HEADING1 { font-size: " + heading1Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 ".HEADING2 { font-size: " + heading2Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 ".HEADING3 { font-size: " + heading3Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 "BODY { color: " + fgColor + ";\n" +
 " background-color: " + bgColor + ";\n" +
 " font-size: " + bodySize + "px;\n" +
 " font-family: " + bodyFont +
 "Times New Roman, Times, serif;\n" +

Listing 3.6 SubmitResume.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 81

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 "}\n" +
 "A:hover { color: red; }\n" +
 "-->\n" +
 "</STYLE>";
 return(styleSheet);
 }

 // Replaces null strings (no such parameter name) or
 // empty strings (e.g., if textfield was blank) with
 // the replacement. Returns the original string otherwise.

 private String replaceIfMissing(String orig,
 String replacement) {
 if ((orig == null) || (orig.length() == 0)) {
 return(replacement);
 } else {
 return(orig);
 }
 }

 // Replaces null strings, empty strings, or the string
 // "default" with the replacement.
 // Returns the original string otherwise.

 private String replaceIfMissingOrDefault(String orig,
 String replacement) {
 if ((orig == null) ||
 (orig.length() == 0) ||
 (orig.equals("default"))) {
 return(replacement);
 } else {
 return(orig + ", ");
 }
 }

 // Takes a string representing an integer and returns it
 // as an int. Returns a default if the string is null
 // or in an illegal format.

 private int getSize(String sizeString, int defaultSize) {
 try {
 return(Integer.parseInt(sizeString));
 } catch(NumberFormatException nfe) {
 return(defaultSize);
 }
 }

Listing 3.6 SubmitResume.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

82 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 // Given "Java,C++,Lisp", "Java C++ Lisp" or
 // "Java, C++, Lisp", returns
 // "
 // Java
 // C++
 // Lisp
 // "

 private String makeList(String listItems) {
 StringTokenizer tokenizer =
 new StringTokenizer(listItems, ", ");
 String list = "\n";
 while(tokenizer.hasMoreTokens()) {
 list = list + " " + tokenizer.nextToken() + "\n";
 }
 list = list + "";
 return(list);
 }

 // Show a confirmation page when they press the
 // "Submit" button.

 private void showConfirmation(HttpServletRequest request,
 PrintWriter out) {
 String title = "Submission Confirmed.";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY>\n" +
 "<H1>" + title + "</H1>\n" +
 "Your resume should appear on-line within\n" +
 "24 hours. If it doesn’t, try submitting\n" +
 "again with a different email address.\n" +
 "</BODY></HTML>");
 }

 // Why it is bad to give your email address to untrusted sites

 private void storeResume(HttpServletRequest request) {
 String email = request.getParameter("email");
 putInSpamList(email);
 }

 private void putInSpamList(String emailAddress) {
 // Code removed to protect the guilty.
 }
}

Listing 3.6 SubmitResume.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 83

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Figure 3–5 Front end to SubmitResume servlet.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

84 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 3.7 HTML source of SubmitResume output shown in
Figure 3–6.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Resume for Al Gore Ithm</TITLE>
<STYLE TYPE="text/css">
<!--
.HEADING1 { font-size: 32px;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

Figure 3–6 SubmitResume servlet after “Preview” button is pressed in Figure 3–5.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 85

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

.HEADING2 { font-size: 22px;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

.HEADING3 { font-size: 19px;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}
BODY { color: BLACK;
 background-color: WHITE;
 font-size: 18px;
 font-family: Times New Roman, Times, serif;
}
A:hover { color: red; }
-->
</STYLE>
</HEAD>
<BODY>
<CENTER>
Al Gore Ithm

Chief Technology Officer

ithm@aol.com
</CENTER>

Programming Languages

 Java
 C++
 Smalltalk
 Ada

Skills and Experience

Expert in data structures and computational methods.
<P>

Well known for finding efficient solutions to
<I>apparently</I> intractable problems, then rigorously
proving time and memory requirements for best, worst, and
average-case performance.
<P>
Can prove that P is not equal to NP. Doesn’t want to work
for companies that don’t know what this means.
<P>
Not related to the American politician.
</BODY></HTML>

Listing 3.7 HTML source of SubmitResume output shown in
Figure 3–6. (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

86 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 3–7 Another possible result of SubmitResume servlet.

Figure 3–8 SubmitResume servlet when “Submit” button is pressed.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.6 Filtering Strings for HTML-Specific Characters 87

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

3.6 Filtering Strings for
HTML-Specific Characters

Normally, when a servlet wants to generate HTML that will contain charac-
ters like < or >, it simply uses < or >, the standard HTML character
entities. Similarly, if a servlet wants a double quote or an ampersand to
appear inside an HTML attribute value, it uses " or &. Failing to
make these substitutions results in malformed HTML code, since < or > will
often get interpreted as part of an HTML markup tag, a double quote in an
attribute value may be interpreted as the end of the value, and ampersands
are just plain illegal in attribute values. In most cases, it is easy to note the
special characters and use the standard HTML replacements. However,
there are two cases when it is not so easy to make this substitution manually.

The first case where manual conversion is difficult occurs when the string
is derived from a program excerpt or another source where it is already in
some standard format. Going through manually and changing all the special
characters can be tedious in such a case, but forgetting to convert even one
special character can result in your Web page having missing or improperly
formatted sections (see Figure 3–9 later in this section).

The second case where manual conversion fails is when the string is
derived from HTML form data. Here, the conversion absolutely must be
performed at runtime, since of course the query data is not known at compile
time. Failing to do this for an internal Web page can also result in missing or
improperly formatted sections of the servlet’s output if the user ever sends
these special characters. Failing to do this filtering for externally-accessible
Web pages also lets your page become a vehicle for the cross-site scripting
attack. Here, a malicious programmer embeds GET parameters in a URL that
refers to one of your servlets. These GET parameters expand to HTML
<SCRIPT> elements that exploit known browser bugs. However, by embed-
ding the code in a URL that refers to your site and only distributing the URL,
not the malicious Web page itself, the attacker can remain undiscovered
more easily and can also exploit trusted relationships to make users think the
scripts are coming from a trusted source (your servlet). For more details on
this issue, see http://www.cert.org/advisories/ CA-2000-02.html
and http://www.microsoft.com/technet/security/crssite.asp.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

88 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Code for Filtering

Replacing <, >, ", and & in strings is a simple matter, and there are a number
of different approaches that would accomplish the task. However, it is impor-
tant to remember that Java strings are immutable (i.e., can’t be modified), so
string concatenation involves copying and then discarding many string seg-
ments. For example, consider the following two lines:

String s1 = "Hello";

String s2 = s1 + " World";

Since s1 cannot be modified, the second line makes a copy of s1 and appends
"World" to the copy, then the copy is discarded. To avoid the expense of gener-
ating these temporary objects (garbage), you should use a mutable data structure,
and StringBuffer is the natural choice. Listing 3.8 shows a static filter
method that uses a StringBuffer to efficiently copy characters from an input
string to a filtered version, replacing the four special characters along the way.

Listing 3.8 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {

// Other methods in ServletUtilities shown elsewhere...

 /** Given a string, this method replaces all occurrences of
 * '<' with '<', all occurrences of '>' with
 * '>', and (to handle cases that occur inside attribute
 * values), all occurrences of double quotes with
 * '"' and all occurrences of '&' with '&'.
 * Without such filtering, an arbitrary string
 * could not safely be inserted in a Web page.
 */

 public static String filter(String input) {
 StringBuffer filtered = new StringBuffer(input.length());
 char c;
 for(int i=0; i<input.length(); i++) {
 c = input.charAt(i);
 if (c == '<') {
 filtered.append("<");
 } else if (c == '>') {
 filtered.append(">");
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.6 Filtering Strings for HTML-Specific Characters 89

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Example

By means of illustration, consider a servlet that attempts to generate a Web
page containing the following code listing:

if (a<b) {
doThis();

} else {
doThat();

}

If the code was inserted into the Web page verbatim, the <b would be
interpreted as the beginning of an HTML tag, and all of the code up to the
next > would likely be interpreted as malformed pieces of that tag. For exam-
ple, Listing 3.9 shows a servlet that outputs this code fragment, and Figure
3–9 shows the poor result. Listing 3.10 presents a servlet that changes noth-
ing except for filtering the string containing the code fragment, and, as Fig-
ure 3–10 illustrates, the result is fine.

 } else if (c == '"') {
 filtered.append(""");
 } else if (c == '&') {
 filtered.append("&");
 } else {
 filtered.append(c);
 }
 }
 return(filtered.toString());
 }
}

Listing 3.9 BadCodeServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that displays a fragment of some Java code,
 * but forgets to filter out the HTML-specific characters
 * (the less-than sign in this case).
 */

public class BadCodeServlet extends HttpServlet {
 private String codeFragment =

Listing 3.8 ServletUtilities.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

90 Chapter 3 Handling the Client Request: Form Data

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 "if (a<b) {\n" +
 " doThis();\n" +
 "} else {\n" +
 " doThat();\n" +
 "}\n";

 public String getCodeFragment() {
 return(codeFragment);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "The Java 'if' Statement";

 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY>\n" +
 "<H1>" + title + "</H1>\n" +
 "<PRE>\n" +
 getCodeFragment() +
 "</PRE>\n" +
 "Note that you <I>must</I> use curly braces\n" +
 "when the 'if' or 'else' clauses contain\n" +
 "more than one expression.\n" +
 "</BODY></HTML>");
 }
}

Listing 3.10 FilteredCodeServlet.java

package coreservlets;

/** Subclass of BadCodeServlet that keeps the same doGet method
 * but filters the code fragment for HTML-specific characters.
 * You should filter strings that are likely to contain
 * special characters (like program excerpts) or strings
 * that are derived from user input.
 */

public class FilteredCodeServlet extends BadCodeServlet {
 public String getCodeFragment() {
 return(ServletUtilities.filter(super.getCodeFragment()));
 }
}

Listing 3.9 BadCodeServlet.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.6 Filtering Strings for HTML-Specific Characters 91

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Figure 3–9 Result of BadCodeServlet: much of the code fragment is lost, and the
text following the code fragment is incorrectly displayed in a monospaced font.

Figure 3–10 Result of FilteredCodeServlet: use of the filter method solves
problems with strings containing special characters.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

	Handling the Client Request: Form�Data
	Topics in This Chapter
	3
	O
	3.1 The Role of Form Data
	3.2 Reading Form Data from Servlets
	3.3 Example: Reading Three Explicit Parameters
	Figure 3–1 HTML front end resulting from ThreeParamsForm.html.
	Figure 3–2 Output of ThreeParams servlet.

	3.4 Example: Reading All Parameters
	Figure 3–3 HTML front end that collects data for ShowParameters servlet.
	Figure 3–4 Output of ShowParameters servlet.

	3.5 A Resumé Posting Service
	Figure 3–5 Front end to SubmitResume servlet.
	Figure 3–6 SubmitResume servlet after “Preview” button is pressed in Figure 3–5.
	Figure 3–7 Another possible result of SubmitResume servlet.
	Figure 3–8 SubmitResume servlet when “Submit” button is pressed.

	3.6 Filtering Strings for HTML-Specific Characters
	Code for Filtering
	Example
	Figure 3–9 Result of BadCodeServlet: much of the code fragment is lost, and the text following th...
	Figure 3–10 Result of FilteredCodeServlet: use of the filter method solves problems with strings ...

