
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Generating the
Server Response:

HTTP Response
Headers
Topics in This Chapter

• Setting response headers from servlets

• The purpose of each of the HTTP 1.1 response headers

• Common MIME types

• A servlet that uses the Refresh header to repeatedly
access ongoing computations

• Servlets that exploit persistent (keep-alive) HTTP
connections

• Generating GIF images from servlets
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
response from a Web server normally consists of a status line, one or
more response headers, a blank line, and the document. To get the
most out of your servlets, you need to know how to use the status line

and response headers effectively, not just how to generate the document.
Setting the HTTP response headers often goes hand in hand with setting

the status codes in the status line, as discussed in the previous chapter. For
example, all the “document moved” status codes (300 through 307) have an
accompanying Location header, and a 401 (Unauthorized) code always
includes an accompanying WWW-Authenticate header. However, specifying
headers can also play a useful role even when no unusual status code is set.
Response headers can be used to specify cookies, to supply the page modifi-
cation date (for client-side caching), to instruct the browser to reload the
page after a designated interval, to give the file size so that persistent HTTP
connections can be used, to designate the type of document being generated,
and to perform many other tasks.

7.1 Setting Response Headers
from Servlets

The most general way to specify headers is to use the setHeader method of
HttpServletResponse. This method takes two strings: the header name and

A

143

144 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
the header value. As with setting status codes, you must specify headers
before returning the actual document. With servlets version 2.1, this means
that you must set the headers before the first use of the PrintWriter or raw
OutputStream that transmits the document content. With servlets version
2.2 (the version in J2EE), the PrintWriter may use a buffer, so you can set
headers until the first time the buffer is flushed. See Section 6.1 (Specifying
Status Codes) for details.

Core Approach

Be sure to set response headers before sending any document content to
the client.

In addition to the general-purpose setHeader method, HttpServlet-
Response also has two specialized methods to set headers that contain dates
and integers:

• setDateHeader(String header, long milliseconds)

This method saves you the trouble of translating a Java date in
milliseconds since 1970 (as returned by
System.currentTimeMillis, Date.getTime, or
Calendar.getTimeInMillis) into a GMT time string.

• setIntHeader(String header, int headerValue)

This method spares you the minor inconvenience of converting
an int to a String before inserting it into a header.

HTTP allows multiple occurrences of the same header name, and you
sometimes want to add a new header rather than replace any existing header
with the same name. For example, it is quite common to have multiple
Accept and Set-Cookie headers that specify different supported MIME
types and different cookies, respectively. With servlets version 2.1, set-
Header, setDateHeader and setIntHeader always add new headers, so
there is no way to “unset” headers that were set earlier (e.g., by an inherited
method). With servlets version 2.2, setHeader, setDateHeader, and
setIntHeader replace any existing headers of the same name, whereas
addHeader, addDateHeader, and addIntHeader add a header regardless of
whether a header of that name already exists. If it matters to you whether a
specific header has already been set, use containsHeader to check.

Finally, HttpServletResponse also supplies a number of convenience
methods for specifying common headers. These methods are summarized as
follows.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 145

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

• setContentType

This method sets the Content-Type header and is used by the
majority of servlets. See Section 7.5 (Using Servlets to Generate
GIF Images) for an example of its use.

• setContentLength

This method sets the Content-Length header, which is useful
if the browser supports persistent (keep-alive) HTTP
connections. See Section 7.4 for an example.

• addCookie

This method inserts a cookie into the Set-Cookie header.
There is no corresponding setCookie method, since it is
normal to have multiple Set-Cookie lines. See Chapter 8 for a
discussion of cookies.

• sendRedirect

As discussed in the previous chapter, the sendRedirect
method sets the Location header as well as setting the status
code to 302. See Section 6.3 (A Front End to Various Search
Engines) for an example.

7.2 HTTP 1.1 Response Headers
and Their Meaning

Following is a summary of the HTTP 1.1 response headers. A good under-
standing of these headers can increase the effectiveness of your servlets, so
you should at least skim the descriptions to see what options are at your dis-
posal. You can come back to get details when you are ready to make use of
the capabilities. Note that Appendix A (Servlet and JSP Quick Reference)
presents a brief summary of these headers for use as a reminder.

These headers are a superset of those permitted in HTTP 1.0. For addi-
tional details on these headers, see the HTTP 1.1 specification, given in RFC
2616. There are a number of places the official RFCs are archived on-line;
your best bet is to start at http://www.rfc-editor.org/ to get a current
list of the archive sites. Header names are not case sensitive, but are tradi-
tionally written with the first letter of each word capitalized.

Be cautious in writing servlets whose behavior depends on response head-
ers that are only available in HTTP 1.1, especially if your servlet needs to run
on the WWW “at large,” rather than on an intranet—many older browsers
support only HTTP 1.0. It is best to explicitly check the HTTP version with
request.getRequestProtocol before using new headers.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

146 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Accept-Ranges
This header, which is new in HTTP 1.1, tells the client whether or not
you accept Range request headers. You typically specify a value of
bytes to indicate that you accept Range requests, and a value of none
to indicate that you do not.

Age
This header is used by proxies to indicate how long ago the document
was generated by the original server. It is new in HTTP 1.1 and is rarely
used by servlets.

Allow
The Allow header specifies the request methods (GET, POST, etc.) that
the server supports. It is required for 405 (Method Not Allowed)
responses. The default service method of servlets automatically gener-
ates this header for OPTIONS requests.

Cache-Control
This useful header tells the browser or other client the circumstances in
which the response document can safely be cached. It has the following
possible values:

• public: Document is cacheable, even if normal rules (e.g., for
password-protected pages) indicate that it shouldn’t be.

• private: Document is for a single user and can only be stored
in private (nonshared) caches.

• no-cache: Document should never be cached (i.e., used to
satisfy a later request). The server can also specify
“no-cache="header1,header2,...,headerN"” to indicate
the headers that should be omitted if a cached response is later
used. Browsers normally do not cache documents that were
retrieved by requests that include form data. However, if a
servlet generates different content for different requests even
when the requests contain no form data, it is critical to tell the
browser not to cache the response. Since older browsers use the
Pragma header for this purpose, the typical servlet approach is
to set both headers, as in the following example.
response.setHeader("Cache-Control", "no-cache");

response.setHeader("Pragma", "no-cache");
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 147

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

• no-store: Document should never be cached and should not
even be stored in a temporary location on disk. This header is
intended to prevent inadvertent copies of sensitive information.

• must-revalidate: Client must revalidate document with
original server (not just intermediate proxies) each time it is used.

• proxy-revalidate: This is the same as must-revalidate,
except that it applies only to shared caches.

• max-age=xxx: Document should be considered stale after xxx
seconds. This is a convenient alternative to the Expires header,
but only works with HTTP 1.1 clients. If both max-age and
Expires are present in the response, the max-age value takes
precedence.

• s-max-age=xxx: Shared caches should consider the document
stale after xxx seconds.

The Cache-Control header is new in HTTP 1.1.

Connection
A value of close for this response header instructs the browser not to
use persistent HTTP connections. Technically, persistent connections
are the default when the client supports HTTP 1.1 and does not specify
a “Connection: close” request header (or when an HTTP 1.0 client
specifies “Connection: keep-alive”). However, since persistent con-
nections require a Content-Length response header, there is no reason
for a servlet to explicitly use the Connection header. Just omit the Con-
tent-Length header if you aren’t using persistent connections. See
Section 7.4 (Using Persistent HTTP Connections) for an example of the
use of persistent HTTP connections from servlets.

Content-Encoding
This header indicates the way in which the page was encoded during
transmission. The browser should reverse the encoding before deciding
what to do with the document. Compressing the document with gzip
can result in huge savings in transmission time; for an example, see Sec-
tion 4.4 (Sending Compressed Web Pages).

Content-Language
The Content-Language header signifies the language in which the
document is written. The value of the header should be one of the stan-
dard language codes such as en, en-us, da, etc. See RFC 1766 for
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

148 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
details (you can access RFCs on-line at one of the archive sites listed at
http://www.rfc-editor.org/).

Content-Length
This header indicates the number of bytes in the response. This infor-
mation is needed only if the browser is using a persistent (keep-alive)
HTTP connection. See the Connection header for determining when
the browser supports persistent connections. If you want your servlet to
take advantage of persistent connections when the browser supports it,
your servlet should write the document into a ByteArrayOutput-
Stream, look up its size when done, put that into the Content-Length
field with response.setContentLength, then send the content via
byteArrayStream.writeTo(response.getOutputStream()). For
an example of this approach, see Section 7.4.

Content-Location
This header supplies an alternative address for the requested docu-
ment. Content-Location is informational; responses that include this
header also include the requested document, unlike the case with the
Location header. This header is new to HTTP 1.1.

Content-MD5
The Content-MD5 response header provides an MD5 digest for the
subsequent document. This digest provides a message integrity check
for clients that want to confirm they received the complete, unaltered
document. See RFC 1864 for details on MD5. This header is new in
HTTP 1.1.

Content-Range
This new HTTP 1.1 header is sent with partial-document responses and
specifies how much of the total document was sent. For example, a value
of “bytes 500-999/2345” means that the current response includes
bytes 500 through 999 of a document that contains 2345 bytes in total.

Content-Type
The Content-Type header gives the MIME (Multipurpose Internet
Mail Extension) type of the response document. Setting this header is
so common that there is a special method in HttpServletResponse for
it: setContentType. MIME types are of the form maintype/subtype
for officially registered types, and of the form maintype/x-subtype for
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 149

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

unregistered types. The default MIME type for servlets is text/plain,
but servlets usually explicitly specify text/html. They can, however,
specify other types instead. For example, Section 7.5 (Using Servlets to
Generate GIF Images) presents a servlet that builds a GIF image based
upon input provided by specifying the image/gif content type, and
Section 11.2 (The contentType Attribute) shows how servlets and JSP
pages can generate Excel spreadsheets by specifying a content type of
application/vnd.ms-excel.

Table 7.1 lists some the most common MIME types used by servlets.

For more detail, many of the common MIME types are listed in RFC
1521 and RFC 1522 (again, see http://www.rfc-editor.org/ for a
list of RFC archive sites). However, new MIME types are registered all
the time, so a dynamic list is a better place to look. The officially regis-
tered types are listed at
http://www.isi.edu/in-notes/iana/assign-

ments/media-types/media-types. For common unregistered types,
http://www.ltsw.se/knbase/internet/mime.htp is a good source.

Table 7.1 Common MIME Types

Type Meaning

application/msword Microsoft Word document

application/octet-stream Unrecognized or binary data

application/pdf Acrobat (.pdf) file

application/postscript PostScript file

application/vnd.lotus-notes Lotus Notes file

application/vnd.ms-excel Excel spreadsheet

application/vnd.ms-powerpoint Powerpoint presentation

application/x-gzip Gzip archive

application/x-java-archive JAR file

application/x-java-serial-
ized-object

Serialized Java object

application/x-java-vm Java bytecode (.class) file
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

150 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Date
This header specifies the current date in GMT format. If you want to
set the date from a servlet, use the setDateHeader method to specify
it. That method saves you the trouble of formatting the date string prop-
erly, as would be necessary with response.setHeader("Date",
"..."). However, most servers set this header automatically, so servlets
don’t usually need to.

ETag
This new HTTP 1.1 header gives names to returned documents so that
they can be referred to by the client later (as with the If-Match request
header).

Expires
This header stipulates the time at which the content should be consid-
ered out-of-date and thus no longer be cached. A servlet might use this

application/zip Zip archive

audio/basic Sound file in .au or .snd format

audio/x-aiff AIFF sound file

audio/x-wav Microsoft Windows sound file

audio/midi MIDI sound file

text/css HTML cascading style sheet

text/html HTML document

text/plain Plain text

image/gif GIF image

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/x-xbitmap X Window bitmap image

video/mpeg MPEG video clip

video/quicktime QuickTime video clip

Table 7.1 Common MIME Types (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 151

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

for a document that changes relatively frequently, to prevent the
browser from displaying a stale cached value. For example, the follow-
ing would instruct the browser not to cache the document for longer
than 10 minutes

long currentTime = System.currentTimeMillis();

long tenMinutes = 10*60*1000; // In milliseconds

response.setDateHeader("Expires",

currentTime + tenMinutes);

Also see the max-age value of the Cache-Control header.

Last-Modified

This very useful header indicates when the document was last changed.
The client can then cache the document and supply a date by an If-Mod-
ified-Since request header in later requests. This request is treated as
a conditional GET, with the document only being returned if the
Last-Modified date is later than the one specified for If-Modi-
fied-Since. Otherwise, a 304 (Not Modified) status line is returned,
and the client uses the cached document. If you set this header explicitly,
use the setDateHeader method to save yourself the bother of formatting
GMT date strings. However, in most cases you simply implement the
getLastModified method and let the standard service method handle
If-Modified-Since requests. For an example, see Section 2.8 (An
Example Using Servlet Initialization and Page Modification Dates).

Location

This header, which should be included with all responses that have a sta-
tus code in the 300s, notifies the browser of the document address. The
browser automatically reconnects to this location and retrieves the new
document. This header is usually set indirectly, along with a 302 status
code, by the sendRedirect method of HttpServletResponse. An
example is given in Section 6.3 (A Front End to Various Search Engines).

Pragma

Supplying this header with a value of no-cache instructs HTTP 1.0 cli-
ents not to cache the document. However, support for this header was
inconsistent with HTTP 1.0 browsers. In HTTP 1.1, “Cache-Control:
no-cache” is a more reliable replacement.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

152 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Refresh
This header indicates how soon (in seconds) the browser should ask for
an updated page. For example, to tell the browser to ask for a new copy
in 30 seconds, you would specify a value of 30 with

response.setIntHeader("Refresh", 30)

Note that Refresh does not stipulate continual updates; it just speci-
fies when the next update should be. So, you have to continue to sup-
ply Refresh in all subsequent responses, and sending a 204 (No
Content) status code stops the browser from reloading further. For an
example, see Section 7.3 (Persistent Servlet State and Auto-Reloading
Pages).

Instead of having the browser just reload the current page, you can
specify the page to load. You do this by supplying a semicolon and a
URL after the refresh time. For example, to tell the browser to go to
http://host/path after 5 seconds, you would do the following.

response.setHeader("Refresh", "5; URL=http://host/path")

This setting is useful for “splash screens,” where an introductory image
or message is displayed briefly before the real page is loaded.

Note that this header is commonly set by
<META HTTP-EQUIV="Refresh"

CONTENT="5; URL=http://host/path">

in the HEAD section of the HTML page, rather than as an explicit header
from the server. That usage came about because automatic reloading or
forwarding is something often desired by authors of static HTML pages.
For servlets, however, setting the header directly is easier and clearer.

This header is not officially part of HTTP 1.1 but is an extension sup-
ported by both Netscape and Internet Explorer.

Retry-After
This header can be used in conjunction with a 503 (Service Unavail-
able) response to tell the client how soon it can repeat its request.

Server
This header identifies the Web server. Servlets don’t usually set this; the
Web server itself does.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 153

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Set-Cookie
The Set-Cookie header specifies a cookie associated with the page.
Each cookie requires a separate Set-Cookie header. Servlets should not
use response.setHeader("Set-Cookie", ...), but instead should
use the special-purpose addCookie method of HttpServletResponse.
For details, see Chapter 8 (Handling Cookies). Technically, Set-Cookie
is not part of HTTP 1.1. It was originally a Netscape extension but is now
very widely supported, including in both Netscape and Internet Explorer.

Trailer
This new and rarely used HTTP 1.1 header identifies the header fields
that are present in the trailer of a message that is sent with “chunked”
transfer-coding. See Section 3.6 of the HTTP 1.1 specification (RFC
2616) for details. Recall that http://www.rfc-editor.org/ maintains
an up-to-date list of RFC archive sites.

Transfer-Encoding
Supplying this header with a value of chunked indicates “chunked”
transfer-coding. See Section 3.6 of the HTTP 1.1 specification (RFC
2616) for details.

Upgrade
This header is used when the client first uses the Upgrade request
header to ask the server to switch to one of several possible new proto-
cols. If the server agrees, it sends a 101 (Switching Protocols) status
code and includes an Upgrade response header with the specific proto-
col it is switching to. This protocol negotiation is usually carried on by
the server itself, not by a servlet.

Vary
This rarely used new HTTP 1.1 header tells the client which headers
can be used to determine if the response document can be cached.

Via
This header is used by gateways and proxies to list the intermediate sites
the request passed through. It is new in HTTP 1.1.

Warning
This new and rarely used catchall header lets you warn clients about
caching or content transformation errors.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

154 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
WWW-Authenticate
This header is always included with a 401 (Unauthorized) status code.
It tells the browser what authorization type and realm the client should
supply in its Authorization header. Frequently, servlets let pass-
word-protected Web pages be handled by the Web server’s specialized
mechanisms (e.g., .htaccess) rather than handling them directly. For
an example of servlets dealing directly with this header, see Section 4.5
(Restricting Access to Web Pages).

7.3 Persistent Servlet State and
Auto-Reloading Pages

Here is an example that lets you ask for a list of some large, randomly chosen
prime numbers. This computation may take some time for very large num-
bers (e.g., 150 digits), so the servlet immediately returns initial results but
then keeps calculating, using a low-priority thread so that it won’t degrade
Web server performance. If the calculations are not complete, the servlet
instructs the browser to ask for a new page in a few seconds by sending it a
Refresh header.

In addition to illustrating the value of HTTP response headers, this exam-
ple shows two other valuable servlet capabilities. First, it shows that the same
servlet can handle multiple simultaneous connections, each with its own
thread. So, while one thread is finishing a calculation for one client, another
client can connect and still see partial results.

Second, this example shows how easy it is for servlets to maintain state
between requests, something that is cumbersome to implement in tradi-
tional CGI and many CGI alternatives. Only a single instance of the servlet
is created, and each request simply results in a new thread calling the serv-
let’s service method (which calls doGet or doPost). So, shared data simply
has to be placed in a regular instance variable (field) of the servlet. Thus,
the servlet can access the appropriate ongoing calculation when the
browser reloads the page and can keep a list of the N most recently
requested results, returning them immediately if a new request specifies
the same parameters as a recent one. Of course, the normal rules that
require authors to synchronize multithreaded access to shared data still
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 155

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

apply to servlets. Servlets can also store persistent data in the Servlet-
Context object that is available through the getServletContext method.
ServletContext has setAttribute and getAttribute methods that let
you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the Servlet-
Context is that the ServletContext is shared by all servlets in the servlet
engine (or in the Web application, if your server supports such a capability).

Listing 7.1 shows the main servlet class. First, it receives a request that
specifies two parameters: numPrimes and numDigits. These values are nor-
mally collected from the user and sent to the servlet by means of a simple
HTML form. Listing 7.2 shows the source code and Figure 7–1 shows the
result. Next, these parameters are converted to integers by means of a simple
utility that uses Integer.parseInt (see Listing 7.5). These values are then
matched by the findPrimeList method to a Vector of recent or ongoing
calculations to see if there is a previous computation corresponding to the
same two values. If so, that previous value (of type PrimeList) is used; oth-
erwise, a new PrimeList is created and stored in the ongoing-calculations
Vector, potentially displacing the oldest previous list. Next, that PrimeList
is checked to determine if it has finished finding all of its primes. If not, the
client is sent a Refresh header to tell it to come back in five seconds for
updated results. Either way, a bulleted list of the current values is returned to
the client.

Listings 7.3 (PrimeList.java) and 7.4 (Primes.java) present auxiliary
code used by the servlet. PrimeList.java handles the background thread
for the creation of a list of primes for a specific set of values. Primes.java
contains the low-level algorithms for choosing a random number of a speci-
fied length and then finding a prime at or above that value. It uses built-in
methods in the BigInteger class; the algorithm for determining if the num-
ber is prime is a probabilistic one and thus has a chance of being mistaken.
However, the probability of being wrong can be specified, and I use an error
value of 100. Assuming that the algorithm used in most Java implementations
is the Miller-Rabin test, the likelihood of falsely reporting a composite num-
ber as prime is provably less than 2100. This is almost certainly smaller than
the likelihood of a hardware error or random radiation causing an incorrect
response in a deterministic algorithm, and thus the algorithm can be consid-
ered deterministic.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

156 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.1 PrimeNumbers.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that processes a request to generate n
 * prime numbers, each with at least m digits.
 * It performs the calculations in a low-priority background
 * thread, returning only the results it has found so far.
 * If these results are not complete, it sends a Refresh
 * header instructing the browser to ask for new results a
 * little while later. It also maintains a list of a
 * small number of previously calculated prime lists
 * to return immediately to anyone who supplies the
 * same n and m as a recent completed computation.
 */

public class PrimeNumbers extends HttpServlet {
 private Vector primeListVector = new Vector();
 private int maxPrimeLists = 30;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 int numPrimes =
 ServletUtilities.getIntParameter(request,
 "numPrimes", 50);
 int numDigits =
 ServletUtilities.getIntParameter(request,
 "numDigits", 120);
 PrimeList primeList =
 findPrimeList(primeListVector, numPrimes, numDigits);

 if (primeList == null) {
 primeList = new PrimeList(numPrimes, numDigits, true);
 // Multiple servlet request threads share the instance
 // variables (fields) of PrimeNumbers. So
 // synchronize all access to servlet fields.
 synchronized(primeListVector) {
 if (primeListVector.size() >= maxPrimeLists)
 primeListVector.removeElementAt(0);
 primeListVector.addElement(primeList);
 }
 }
 Vector currentPrimes = primeList.getPrimes();
 int numCurrentPrimes = currentPrimes.size();
 int numPrimesRemaining = (numPrimes - numCurrentPrimes);
 boolean isLastResult = (numPrimesRemaining == 0);
 if (!isLastResult) {
 response.setHeader("Refresh", "5");
 }
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 157

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Some " + numDigits + "-Digit Prime Numbers";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2 ALIGN=CENTER>" + title + "</H2>\n" +
 "<H3>Primes found with " + numDigits +
 " or more digits: " + numCurrentPrimes +
 ".</H3>");
 if (isLastResult)
 out.println("Done searching.");
 else
 out.println("Still looking for " + numPrimesRemaining +
 " more<BLINK>...</BLINK>");
 out.println("");
 for(int i=0; i<numCurrentPrimes; i++) {
 out.println(" " + currentPrimes.elementAt(i));
 }
 out.println("");
 out.println("</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

 // See if there is an existing ongoing or completed
 // calculation with the same number of primes and number
 // of digits per prime. If so, return those results instead
 // of starting a new background thread. Keep this list
 // small so that the Web server doesn’t use too much memory.
 // Synchronize access to the list since there may be
 // multiple simultaneous requests.

 private PrimeList findPrimeList(Vector primeListVector,
 int numPrimes,
 int numDigits) {
 synchronized(primeListVector) {
 for(int i=0; i<primeListVector.size(); i++) {
 PrimeList primes =
 (PrimeList)primeListVector.elementAt(i);
 if ((numPrimes == primes.numPrimes()) &&
 (numDigits == primes.numDigits()))
 return(primes);
 }
 return(null);
 }
 }
}

Listing 7.1 PrimeNumbers.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

158 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.2 PrimeNumbers.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Finding Large Prime Numbers</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">Finding Large Prime Numbers</H2>

<CENTER>
<FORM ACTION="/servlet/coreservlets.PrimeNumbers">
 Number of primes to calculate:
 <INPUT TYPE="TEXT" NAME="numPrimes" VALUE=25 SIZE=4>

 Number of digits:
 <INPUT TYPE="TEXT" NAME="numDigits" VALUE=150 SIZE=3>

 <INPUT TYPE="SUBMIT" VALUE="Start Calculating">
</FORM>
</CENTER>
</BODY>
</HTML>

Figure 7–1 Result of PrimeNumbers.html, used as a front end to the
PrimeNumbers servlet.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 159

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Figure 7–2 Intermediate result of a request to the PrimeNumbers servlet. This result
can be obtained when the browser reloads automatically or when a different client
independently enters the same parameters as those from an ongoing or recent request.
Either way, the browser will automatically reload the page to get updated results.

Figure 7–3 Final result of a request to the PrimeNumbers servlet. This result can be
obtained when the browser reloads automatically or when a different client independently
enters the same parameters as those from an ongoing or recent request. The browser will
stop updating the page at this point.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

160 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.3 PrimeList.java

package coreservlets;

import java.util.*;
import java.math.BigInteger;

/** Creates a Vector of large prime numbers, usually in
 * a low-priority background thread. Provides a few small
 * thread-safe access methods.
*/

public class PrimeList implements Runnable {
 private Vector primesFound;
 private int numPrimes, numDigits;

 /** Finds numPrimes prime numbers, each of which are
 * numDigits long or longer. You can set it to only
 * return when done, or have it return immediately,
 * and you can later poll it to see how far it
 * has gotten.
 */
 public PrimeList(int numPrimes, int numDigits,
 boolean runInBackground) {
 // Using Vector instead of ArrayList
 // to support JDK 1.1 servlet engines
 primesFound = new Vector(numPrimes);
 this.numPrimes = numPrimes;
 this.numDigits = numDigits;
 if (runInBackground) {
 Thread t = new Thread(this);
 // Use low priority so you don’t slow down server.
 t.setPriority(Thread.MIN_PRIORITY);
 t.start();
 } else {
 run();
 }
 }

 public void run() {
 BigInteger start = Primes.random(numDigits);
 for(int i=0; i<numPrimes; i++) {
 start = Primes.nextPrime(start);
 synchronized(this) {
 primesFound.addElement(start);
 }
 }
 }

 public synchronized boolean isDone() {
 return(primesFound.size() == numPrimes);
 }
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 161

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 public synchronized Vector getPrimes() {
 if (isDone())
 return(primesFound);
 else
 return((Vector)primesFound.clone());
 }

 public int numDigits() {
 return(numDigits);
 }

 public int numPrimes() {
 return(numPrimes);
 }

 public synchronized int numCalculatedPrimes() {
 return(primesFound.size());
 }
}

Listing 7.4 Primes.java

package coreservlets;

import java.math.BigInteger;

/** A few utilities to generate a large random BigInteger,
 * and find the next prime number above a given BigInteger.
*/

public class Primes {
 // Note that BigInteger.ZERO was new in JDK 1.2, and 1.1
 // code is being used to support the most servlet engines.
 private static final BigInteger ZERO = new BigInteger("0");
 private static final BigInteger ONE = new BigInteger("1");
 private static final BigInteger TWO = new BigInteger("2");

 // Likelihood of false prime is less than 1/2^ERR_VAL
 // Assumedly BigInteger uses the Miller-Rabin test or
 // equivalent, and thus is NOT fooled by Carmichael numbers.
 // See section 33.8 of Cormen et al’s Introduction to
 // Algorithms for details.
 private static final int ERR_VAL = 100;

 public static BigInteger nextPrime(BigInteger start) {
 if (isEven(start))
 start = start.add(ONE);
 else

Listing 7.3 PrimeList.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

162 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 start = start.add(TWO);
 if (start.isProbablePrime(ERR_VAL))
 return(start);
 else
 return(nextPrime(start));
 }

 private static boolean isEven(BigInteger n) {
 return(n.mod(TWO).equals(ZERO));
 }

 private static StringBuffer[] digits =
 { new StringBuffer("0"), new StringBuffer("1"),
 new StringBuffer("2"), new StringBuffer("3"),
 new StringBuffer("4"), new StringBuffer("5"),
 new StringBuffer("6"), new StringBuffer("7"),
 new StringBuffer("8"), new StringBuffer("9") };

 private static StringBuffer randomDigit() {
 int index = (int)Math.floor(Math.random() * 10);
 return(digits[index]);
 }

 public static BigInteger random(int numDigits) {
 StringBuffer s = new StringBuffer("");
 for(int i=0; i<numDigits; i++) {
 s.append(randomDigit());
 }
 return(new BigInteger(s.toString()));
 }

 /** Simple command-line program to test. Enter number
 * of digits, and it picks a random number of that
 * length and then prints the first 50 prime numbers
 * above that.
 */

 public static void main(String[] args) {
 int numDigits;
 if (args.length > 0)
 numDigits = Integer.parseInt(args[0]);
 else
 numDigits = 150;
 BigInteger start = random(numDigits);
 for(int i=0; i<50; i++) {
 start = nextPrime(start);
 System.out.println("Prime " + i + " = " + start);
 }
 }
}

Listing 7.4 Primes.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.4 Using Persistent HTTP Connections 163

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

7.4 Using Persistent HTTP
Connections

One of the problems with HTTP 1.0 was that it required a separate socket
connection for each request. When a Web page that includes lots of small
images or many applet classes is retrieved, the overhead of establishing all the
connections could be significant compared to the actual download time of the
documents. Many browsers and servers supported the “keep-alive” extension
to address this problem. With this extension, the server tells the browser how
many bytes are contained in the response, then leaves the connection open
for a certain period of time after returning the document. The client detects

Listing 7.5 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
 // ... Other utilities shown earlier

 /** Read a parameter with the specified name, convert it
 * to an int, and return it. Return the designated default
 * value if the parameter doesn’t exist or if it is an
 * illegal integer format.
 */

 public static int getIntParameter(HttpServletRequest request,
 String paramName,
 int defaultValue) {
 String paramString = request.getParameter(paramName);
 int paramValue;
 try {
 paramValue = Integer.parseInt(paramString);
 } catch(NumberFormatException nfe) { // null or bad format
 paramValue = defaultValue;
 }
 return(paramValue);
 }

 // ...
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

164 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
that the document has finished loading by monitoring the number of bytes
received, and reconnects on the same socket for further transactions. Persis-
tent connections of this type became standard in HTTP 1.1, and compliant
servers are supposed to use persistent connections unless the client explicitly
instructs them not to (either by a “Connection: close” request header or
indirectly by sending a request that specifies HTTP/1.0 instead of HTTP/1.1
and does not also stipulate “Connection: keep-alive”).

Servlets can take advantage of persistent connections if the servlets are
embedded in servers that support them. The server should handle most of
the process, but it has no way to determine how large the returned document
is. So the servlet needs to set the Content-Length response header by
means of response.setContentLength. A servlet can determine the size of
the returned document by buffering the output by means of a ByteArray-
OutputStream, retrieving the number of bytes with the byte stream’s size
method, then sending the buffered output to the client by passing the serv-
let’s output stream to the byte stream’s writeTo method.

Using persistent connections is likely to pay off only for servlets that load a
large number of small objects, where those objects are also servlet-generated
and would thus not otherwise take advantage of the server’s support for per-
sistent connections. Even so, the advantage gained varies greatly from Web
server to Web server and even from Web browser to Web browser. For exam-
ple, the default configuration for Sun’s Java Web Server is to permit only five
connections on a single HTTP socket: a value that is too low for many appli-
cations. Those who use this server can raise the limit by going to the adminis-
tration console, selecting “Web Service” then “Service Tuning,” then entering
a value in the “Connection Persistence” window.

Listing 7.6 shows a servlet that generates a page with 100 IMG tags (see
Figure 7–4 for the result). Each of the IMG tags refers to another servlet
(ImageRetriever, shown in Listing 7.7) that reads a GIF file from the server
system and returns it to the client. Both the original servlet and the Image-
Retriever servlet use persistent connections unless instructed not to do so
by means of a parameter in the form data named usePersistence with a
value of no. With Netscape 4.7 and a 28.8K dialup connection to talk to the
Solaris version of Java Web Server 2.0 (with the connection limit raised above
100), the use of persistent connections reduced the average download time
between 15 and 20 percent.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.4 Using Persistent HTTP Connections 165

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 7.6 PersistentConnection.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Illustrates the value of persistent HTTP connections for
 * pages that include many images, applet classes, or
 * other auxiliary content that would otherwise require
 * a separate connection to retrieve.
 */

public class PersistentConnection extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 ByteArrayOutputStream byteStream =
 new ByteArrayOutputStream(7000);
 PrintWriter out = new PrintWriter(byteStream, true);
 String persistenceFlag =
 request.getParameter("usePersistence");
 boolean usePersistence =
 ((persistenceFlag == null) ||
 (!persistenceFlag.equals("no")));
 String title;
 if (usePersistence) {
 title = "Using Persistent Connection";
 } else {
 title = "Not Using Persistent Connection";
 }
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>");
 int numImages = 100;
 for(int i=0; i<numImages; i++) {
 out.println(makeImage(i, usePersistence));
 }
 out.println("</BODY></HTML>");
 if (usePersistence) {
 response.setContentLength(byteStream.size());
 }
 byteStream.writeTo(response.getOutputStream());
 }

 private String makeImage(int n, boolean usePersistence) {
 String file =
 "/servlet/coreservlets.ImageRetriever?gifLocation=" +
 "/bullets/bullet" + n + ".gif";
 if (!usePersistence)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

166 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 file = file + "&usePersistence=no";
 return("<IMG SRC=\"" + file + "\"\n" +
 " WIDTH=6 HEIGHT=6 ALT=\"\">");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 7.7 ImageRetriever.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** A servlet that reads a GIF file off the local system
 * and sends it to the client with the appropriate MIME type.
 * Includes the Content-Length header to support the
 * use of persistent HTTP connections unless explicitly
 * instructed not to through "usePersistence=no".
 * Used by the PersistentConnection servlet.
*/

public class ImageRetriever extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String gifLocation = request.getParameter("gifLocation");
 if ((gifLocation == null) ||
 (gifLocation.length() == 0)) {
 reportError(response, "Image File Not Specified");
 return;
 }
 String file = getServletContext().getRealPath(gifLocation);
 try {
 BufferedInputStream in =
 new BufferedInputStream(new FileInputStream(file));
 ByteArrayOutputStream byteStream =
 new ByteArrayOutputStream(512);
 int imageByte;

Listing 7.6 PersistentConnection.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.4 Using Persistent HTTP Connections 167

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 while((imageByte = in.read()) != -1) {
 byteStream.write(imageByte);
 }
 in.close();
 String persistenceFlag =
 request.getParameter("usePersistence");
 boolean usePersistence =
 ((persistenceFlag == null) ||
 (!persistenceFlag.equals("no")));
 response.setContentType("image/gif");
 if (usePersistence) {
 response.setContentLength(byteStream.size());
 }
 byteStream.writeTo(response.getOutputStream());
 } catch(IOException ioe) {
 reportError(response, "Error: " + ioe);
 }
 }

 public void reportError(HttpServletResponse response,
 String message)
 throws IOException {
 response.sendError(response.SC_NOT_FOUND,
 message);
 }
}

Listing 7.7 ImageRetriever.java (continued)

Figure 7–4 Result of the PersistentConnection servlet.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

168 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
7.5 Using Servlets to Generate GIF
Images

Although servlets often generate HTML output, they certainly don’t always
do so. For example, Section 11.2 (The contentType Attribute) shows a JSP
page (which gets translated into a servlet) that builds Excel spreadsheets and
returns them to the client. Here, I’ll show you how to generate GIF images.

First, let me summarize the two main steps servlets have to perform in
order to build multimedia content. First, they have to set the Content-Type
response header by using the setContentType method of HttpServlet-
Response. Second, they have to send the output in the appropriate format.
This format varies among document types, of course, but in most cases you
use send binary data, not strings as with HTML documents. Consequently,
servlets will usually get the raw output stream by using the getOutput-
Stream method, rather than getting a PrintWriter by using getWriter.
Putting these two points together, servlets that generate non-HTML content
usually have a section of their doGet or doPost method that looks like this:

response.setContentType("type/subtype");

OutputStream out = response.getOutputStream();

Those are the two general steps required to build non-HTML content.
Next, let’s look at the specific steps required to generate GIF images.

1. Create an Image.
You create an Image object by using the createImage method
of the Component class. Since server-side programs should not
actually open any windows on the screen, they need to explicitly
tell the system to create a native window system object, a pro-
cess that normally occurs automatically when a window pops
up. The addNotify method accomplishes this task. Putting this
all together, here is the normal process:

Frame f = new Frame();

f.addNotify();

int width = ...;

int height = ...;

Image img = f.createImage(width, height);
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 169

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

2. Draw into the Image.
You accomplish this task by calling the Image’s getGraphics
method and then using the resultant Graphics object in the
usual manner. For example, with JDK 1.1, you would use vari-
ous drawXxx and fillXxx methods of Graphics to draw
images, strings, and shapes onto the Image. With the Java 2
platform, you would cast the Graphics object to Graphics2D,
then make use of Java2D’s much richer set of drawing opera-
tions, coordinate transformations, font settings, and fill patterns
to perform the drawing. Here is a simple example:

Graphics g = img.getGraphics();
g.fillRect(...);
g.drawString(...);

3. Set the Content-Type response header.
As already discussed, you use the setContentType method of
HttpServletResponse for this task. The MIME type for GIF
images is image/gif.

response.setContentType("image/gif");

4. Get an output stream.
As discussed previously, if you are sending binary data, you
should call the getOutputStream method of HttpServlet-
Response rather than the getWriter method.

OutputStream out = response.getOutputStream();

5. Send the Image in GIF format to the output stream.
Accomplishing this task yourself requires quite a bit of work.
Fortunately, there are several existing classes that perform this
operation. One of the most popular ones is Jef Poskanzer’s
GifEncoder class, available free from
http://www.acme.com/java/. Here is how you would use this
class to send an Image in GIF format:

try {
new GifEncoder(img, out).encode();

} catch(IOException ioe) {
// Error message

}

Listings 7.8 and 7.9 show a servlet that reads message, fontName, and
fontSize parameters and uses them to create a GIF image showing the mes-
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

170 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
sage in the designated face and size, with a gray, oblique shadowed version of
the message shown behind the main string. This operation makes use of sev-
eral facilities available only in the Java 2 platform. First, it makes use of any
font that is installed on the server system, rather than limiting itself to the
standard names (Serif, SansSerif, Monospaced, Dialog, and DialogIn-
put) available to JDK 1.1 programs.

Second, it uses the translate, scale, and shear transformations to cre-
ate the shadowed version of the main message. Consequently, the servlet will
run only in servlet engines running on the Java 2 platform. You would expect
this to be the case with engines supporting the servlet 2.2 specification, since
that is the servlet version stipulated in J2EE.

Even if you are using a server that supports only version 2.1, you should
still use the Java 2 platform if you can, since it tends to be significantly more
efficient for server-side tasks. However, many servlet 2.1 engines come pre-
configured to use JDK 1.1, and changing the Java version is not always sim-
ple. So, for example, Tomcat and the JSWDK automatically make use of
whichever version of Java is first in your PATH, but the Java Web Server uses a
bundled version of JDK 1.1.

Listing 7.10 shows an HTML form used as a front end to the servlet. Fig-
ures 7–5 through 7–8 show some possible results. Just to simplify experimen-
tation, Listing 7.11 presents an interactive application that lets you specify
the message, font name, and font size on the command line, popping up a
JFrame that shows the same image as the servlet would return. Figure 7–9
shows one typical result.

Listing 7.8 ShadowedText.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.awt.*;

/** Servlet that generates GIF images representing
 * a designated message with an oblique shadowed
 * version behind it.
 * <P>
 * Only runs on servers that support Java 2, since
 * it relies on Java2D to build the images.
 */
public class ShadowedText extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String message = request.getParameter("message");
 if ((message == null) || (message.length() == 0)) {
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 171

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 message = "Missing ’message’ parameter";
 }
 String fontName = request.getParameter("fontName");
 if (fontName == null) {
 fontName = "Serif";
 }
 String fontSizeString = request.getParameter("fontSize");
 int fontSize;
 try {

 fontSize = Integer.parseInt(fontSizeString);
 } catch(NumberFormatException nfe) {
 fontSize = 90;
 }
 response.setContentType("image/gif");
 OutputStream out = response.getOutputStream();
 Image messageImage =
 MessageImage.makeMessageImage(message,
 fontName,
 fontSize);
 MessageImage.sendAsGIF(messageImage, out);
 }

 /** Allow form to send data via either GET or POST. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 7.9 MessageImage.java

package coreservlets;

import java.awt.*;
import java.awt.geom.*;
import java.io.*;
import Acme.JPM.Encoders.GifEncoder;

/** Utilities for building images showing shadowed messages.
 * Includes a routine that uses Jef Poskanzer’s GifEncoder
 * to return the result as a GIF.
 * <P>
 * Does not run in JDK 1.1, since it relies on Java2D
 * to build the images.
 * <P>
 */

Listing 7.8 ShadowedText.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

172 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
public class MessageImage {

 /** Creates an Image of a string with an oblique
 * shadow behind it. Used by the ShadowedText servlet
 * and the ShadowedTextFrame desktop application.
 */
 public static Image makeMessageImage(String message,
 String fontName,
 int fontSize) {
 Frame f = new Frame();
 // Connect to native screen resource for image creation.
 f.addNotify();
 // Make sure Java knows about local font names.
 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 env.getAvailableFontFamilyNames();
 Font font = new Font(fontName, Font.PLAIN, fontSize);
 FontMetrics metrics = f.getFontMetrics(font);
 int messageWidth = metrics.stringWidth(message);
 int baselineX = messageWidth/10;
 int width = messageWidth+2*(baselineX + fontSize);
 int height = fontSize*7/2;
 int baselineY = height*8/10;
 Image messageImage = f.createImage(width, height);
 Graphics2D g2d =
 (Graphics2D)messageImage.getGraphics();
 g2d.setFont(font);
 g2d.translate(baselineX, baselineY);
 g2d.setPaint(Color.lightGray);
 AffineTransform origTransform = g2d.getTransform();
 g2d.shear(-0.95, 0);
 g2d.scale(1, 3);
 g2d.drawString(message, 0, 0);
 g2d.setTransform(origTransform);
 g2d.setPaint(Color.black);
 g2d.drawString(message, 0, 0);
 return(messageImage);
 }

 /** Uses GifEncoder to send the Image down output stream
 * in GIF89A format. See http://www.acme.com/java/ for
 * the GifEncoder class.
 */

 public static void sendAsGIF(Image image, OutputStream out) {
 try {
 new GifEncoder(image, out).encode();
 } catch(IOException ioe) {
 System.err.println("Error outputting GIF: " + ioe);
 }

 }
}

Listing 7.9 MessageImage.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 173

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 7.10 ShadowedText.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>GIF Generation Service</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">GIF Generation Service</H1>
Welcome to the <I>free</I> trial edition of our GIF
generation service. Enter a message, a font name,
and a font size below, then submit the form. You will
be returned a GIF image showing the message in the
designated font, with an oblique "shadow" of the message
behind it. Once you get an image you are satisfied with, right
click on it (or click while holding down the SHIFT key) to save
it to your local disk.
<P>
The server is currently on Windows, so the font name must
be either a standard Java font name (e.g., Serif, SansSerif,
or Monospaced) or a Windows font name (e.g., Arial Black).
Unrecognized font names will revert to Serif.

<FORM ACTION="/servlet/coreservlets.ShadowedText">
 <CENTER>
 Message:
 <INPUT TYPE="TEXT" NAME="message">

 Font name:
 <INPUT TYPE="TEXT" NAME="fontName" VALUE="Serif">

 Font size:
 <INPUT TYPE="TEXT" NAME="fontSize" VALUE="90">

 <Input TYPE="SUBMIT" VALUE="Build Image">
 </CENTER>
</FORM>

</BODY>
</HTML>
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

174 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 7–5 Front end to ShadowedText servlet.

Figure 7–6 Using the GIF-generation servlet to build the logo for a children’s books
Web site. (Result of submitting the form shown in Figure 7–5).
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 175

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Figure 7–7 Using the GIF-generation servlet to build the title image for a site
describing a local theater company.

Figure 7–8 Using the GIF-generation servlet to build an image for a page advertising
a local carnival.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

176 Chapter 7 Generating the Server Response: HTTP Response Headers

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.11 ShadowedTextFrame.java

package coreservlets;

import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;

/** Interactive interface to MessageImage class.
 * Enter message, font name, and font size on the command
 * line. Requires Java2.
 */

public class ShadowedTextFrame extends JPanel {
 private Image messageImage;

 public static void main(String[] args) {
 String message = "Shadowed Text";
 if (args.length > 0) {
 message = args[0];
 }
 String fontName = "Serif";
 if (args.length > 1) {
 fontName = args[1];
 }
 int fontSize = 90;
 if (args.length > 2) {
 try {
 fontSize = Integer.parseInt(args[2]);
 } catch(NumberFormatException nfe) {}
 }
 JFrame frame = new JFrame("Shadowed Text");
 frame.addWindowListener(new ExitListener());
 JPanel panel =
 new ShadowedTextFrame(message, fontName, fontSize);
 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);
 }

 public ShadowedTextFrame(String message,
 String fontName,
 int fontSize) {
 messageImage = MessageImage.makeMessageImage(message,
 fontName,
 fontSize);
 int width = messageImage.getWidth(this);
 int height = messageImage.getHeight(this);
 setPreferredSize(new Dimension(width, height));
 }
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 177

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(messageImage, 0, 0, this);
 }
}

Listing 7.12 ExitListener.java

package coreservlets;

import java.awt.*;

import java.awt.event.*;

/** A listener that you attach to the top-level Frame or JFrame

 * of your application, so quitting the frame exits the app.

 */

public class ExitListener extends WindowAdapter {

 public void windowClosing(WindowEvent event) {

 System.exit(0);

 }

}

Listing 7.11 ShadowedTextFrame.java (continued)

Figure 7–9 ShadowedTextFrame application when invoked with “java
coreservlets.ShadowedTextFrame "Tom’s Tools" Haettenschweiler
100”.

	Generating the Server Response: HTTP Response Headers
	Topics in This Chapter

	7
	A
	7.1 Setting Response Headers from Servlets
	Core Approach

	7.2 HTTP�1.1 Response Headers and Their Meaning
	Accept-Ranges
	Age
	Allow
	Cache-Control
	Connection
	Content-Encoding
	Content-Language
	Content-Length
	Content-Location
	Content-MD5
	Content-Range
	Content-Type
	Date
	ETag
	Expires
	Last-Modified
	Location
	Pragma
	Refresh
	Retry-After
	Server
	Set-Cookie
	Trailer
	Transfer-Encoding
	Upgrade
	Vary
	Via
	Warning
	WWW-Authenticate

	7.3 Persistent Servlet State and Auto-Reloading Pages
	Figure 7–1 Result of PrimeNumbers.html, used as a front end to the PrimeNumbers servlet.
	Figure 7–2 Intermediate result of a request to the PrimeNumbers servlet. This result can be obtai...
	Figure 7–3 Final result of a request to the PrimeNumbers servlet. This result can be obtained whe...

	7.4 Using Persistent HTTP Connections
	Figure 7–4 Result of the PersistentConnection servlet.

	7.5 Using Servlets to Generate GIF Images
	1. Create an Image. You create an Image object by using the createImage method of the Component c...
	2. Draw into the Image. You accomplish this task by calling the Image’s getGraphics method and th...
	3. Set the Content-Type response header. As already discussed, you use the setContentType method ...
	4. Get an output stream. As discussed previously, if you are sending binary data, you should call...
	5. Send the Image in GIF format to the output stream. Accomplishing this task yourself requires q...
	Figure 7–5 Front end to ShadowedText servlet.
	Figure 7–6 Using the GIF-generation servlet to build the logo for a children’s books Web site. (R...
	Figure 7–7 Using the GIF-generation servlet to build the title image for a site describing a loca...
	Figure 7–8 Using the GIF-generation servlet to build an image for a page advertising a local carn...
	Figure 7–9 ShadowedTextFrame application when invoked with “java coreservlets.ShadowedTextFrame "...

